Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
基本信息
- 批准号:10653908
- 负责人:
- 金额:$ 41.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBioinformaticsBiologicalCoupledDataData AnalysesData SetDatabasesDiseaseGene TargetingGenesGeneticGenomicsGoalsHumanIndividualInterdisciplinary StudyLaboratory OrganismLungMacrophageMethodsModelingMusMycobacterium tuberculosisOverlapping GenesPathogenesisPathway AnalysisPathway interactionsPatternPhenotypeProcessProteinsProteomicsResearchResearch MethodologyResearch PriorityResistanceSignal TransductionSourceSystems BiologyTestingTuberculosisUgandaVariantVietnamclinical phenotypecomplex datadata complexitydata integrationdiverse dataexperimental studygenetic variantgenome wide association studygenome-wideinnovationinsightmodel organismmultiple omicsnovelpathogenpathogen genomesynergismtranscriptometranscriptome sequencing
项目摘要
Genome-wide research strategies provide unprecedented opportunities for insight but also
major bioinformatic challenges due to the size and complexity of the data. The multidisciplinary
research in this TBRU utilizes cutting-edge research methods that utilize a broad spectrum of
‘omics platforms, including proteomics, genomics (RNA-seq), genome-wide association studies
(GWAS) of the host and pathogen, cellular experimental screens with host and pathogen data,
and targeted model organism experiments. Integration of these datasets and research
strategies requires innovative approaches to mechanistically examine how Mtb and host genetic
variants modulate TB pathogenesis. Core B uses pathway-driven and cutting-edge
bioinformatics approaches to integrate the genetic results from Core A with multiple large-scale
and diverse datasets from each project (proteomics, Path-Seq, RNAseq) to dynamically identify
and prioritize pathways and protein networks for functional testing. While each of these
experiments are analyzed individually within each project, the results have potential for greater
insight beyond each dataset. Core B represents a key source of synergy as data will flow
between all the Projects and Cores and will generate models leading to targeted experiments
with an iterative analytic and hypothesis testing process. This Core will bring together expertise
across the Projects for the different ‘omic platforms as well as bioinformatic strategies for data
integration. Aim 1 provides integrated analyses of the diverse datasets from Core A and each
Project. Aim 2 utilizes network propagation, a systems biology method applied to diverse
disease areas, which uses networks to identify convergent pathways highlighted by distinct
omics-level datasets. This method is useful when the individual gene overlap between studies is
poor, while genes from distinct studies do possess pathway/functional overlap with one another.
Here we apply it to study phenotypic variation in human TB and use it as an independent
method to extract insights and new disease gene targets from the diverse and complex datasets
of this consortium. The overall goal is to generate models from data integration that prioritize
research directions across the Projects and Core A and create testable mechanistic
hypotheses that are iteratively assessed between Core B and all TBRU components.
全基因组研究策略为洞察力提供了前所未有的机会,
由于数据的规模和复杂性,生物信息学面临重大挑战。多学科
在这个TBRU的研究利用尖端的研究方法,利用广泛的
组学平台,包括蛋白质组学、基因组学(RNA-seq)、全基因组关联研究
(GWAS)的宿主和病原体,宿主和病原体数据的细胞实验屏幕,
和有针对性的模式生物实验。这些数据集和研究的整合
战略需要创新的方法来机械地检查结核分枝杆菌和宿主遗传
变异体调节TB发病机制。核心B使用路径驱动和前沿
生物信息学方法将来自核心A的遗传结果与多个大规模
以及来自每个项目(蛋白质组学、Path-Seq、RNAseq)的不同数据集,
并优先考虑功能测试的途径和蛋白质网络。尽管每个
实验在每个项目中单独分析,结果有可能更大
超越每一个数据集。核心B代表数据流动时协同作用的关键来源
在所有项目和核心之间建立联系,并将生成导致有针对性实验的模型
通过迭代分析和假设检验过程。该核心将汇集专业知识
在不同的“组学平台”项目以及数据的生物信息学策略中,
一体化目标1提供了对核心A的不同数据集的综合分析,
项目目的2利用网络传播,一种系统生物学方法,
疾病领域,它使用网络来确定由不同的
omics级别的数据集。当研究之间的单个基因重叠是
差,而来自不同研究的基因确实具有相互重叠的途径/功能。
在这里,我们应用它来研究人类结核病的表型变异,并将其作为一个独立的
一种从多样化和复杂的数据集中提取见解和新的疾病基因靶点的方法
这个财团。总体目标是从数据集成中生成模型,
跨项目和核心A的研究方向,并创建可测试的机制
在核心B和所有TBRU组件之间反复评估的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Marie Stein其他文献
Catherine Marie Stein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Marie Stein', 18)}}的其他基金
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10459538 - 财政年份:2021
- 资助金额:
$ 41.52万 - 项目类别:
Systems Biology, Bioinformatics, & Data Integration
系统生物学、生物信息学、
- 批准号:
10271171 - 财政年份:2021
- 资助金额:
$ 41.52万 - 项目类别:
Genetics of TB resistance in HIV positive subjects
HIV 阳性受试者的结核病耐药性遗传学
- 批准号:
9511030 - 财政年份:2017
- 资助金额:
$ 41.52万 - 项目类别:
SUSCEPTIBILITY TO RIFT VALLEY FEVER INFECTION AND ASSOCIATED RETINITIS
容易感染裂谷热和相关视网膜炎
- 批准号:
8171725 - 财政年份:2010
- 资助金额:
$ 41.52万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 41.52万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 41.52万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 41.52万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 41.52万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 41.52万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 41.52万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 41.52万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 41.52万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 41.52万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 41.52万 - 项目类别:
Discovery Grants Program - Individual