A meshfree numerical approach for soils at rest and in flow
针对静止和流动土壤的无网格数值方法
基本信息
- 批准号:178974611
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Granular materials are solids as they can permanently sustain shear stress. On the other hand, they can undergo large deformations (like fluids). The transition from small strain, where the inner stresses increases with strain, to large strain, where the stresses remain constant at further deformation (flow), can be considered as phase transition. The most striking similarity is pattern formation, which in granular bodies appears as shear localization.The particular position of granular materials between fluids and solids characterizes many of their scientific and technical applications. They can be placed in fills, slopes and silos, but they can also flow downhill in valleys and pipes. Vessels can move upon sand, but they also can sink into it. Buildings are safely founded on sand but they can also subside into it during liquefaction. The implied large deformations are usually non-topological, i.e. neighborhood relations are not preserved. Therefore, meshfree methods appear to be the appropriate numerical tool for simulations. As compared with the Discrete Element Method, meshfree methods open the possibility to use not only refined constitutive models but also variable initial densities as well as the whole spectrum of continuum mechanics.In the first phase of our research project, we developed a special meshfree method that is characterized by outstanding simplicity. It is a particular implementation of the motion of points whose density, velocity, and stress can be obtained by interpolation of neighborhood configuration. The governing balance equations are used in the strong form. Two codes have been developed, FPM (explicit and linearized implicit) and SPARC (nonlinear).In the continuation phase, applied herewith, the gained insights and achievements will be used to simulate not only quasi-static (slow) deformations but also dynamic (fast) ones, and also to couple them to each other. Coupled problems are characterized by phase transitions of the type solid / quasi-fluid / solid. To model such transitions each method applied so far has to be enhanced, and synergy effects have to be exploited. The list of coupled processes is long and involves e.g. failures of geotechnical structures (landslides), discharge from silos, tunnel collapse, etc.The biggest challenge is of mathematical/physical nature: the loss of controllability of the mechanical behavior of granular materials that occurs in the vicinity of phase transitions (limit states in geotechnical engineering). This loss manifests in various ways: computation instabilities, ill-conditioned matrices, problems of convergence, and the like, and requires special regularization methods.
颗粒状材料是固体,因为它们能永久承受剪切应力。另一方面,它们可以经历大的变形(像液体一样)。从小应变(内部应力随应变增加)到大应变(在进一步变形(流动)时应力保持不变)的转变可以认为是相变。最显著的相似点是模式的形成,在颗粒体中表现为剪切局部化。颗粒材料在流体和固体之间的特殊位置决定了它们的许多科学和技术应用。它们可以放置在填充物、斜坡和筒仓中,但它们也可以通过山谷和管道向下流动。船只可以在沙子上移动,但也可以沉入沙子。建筑物安全地建在沙子上,但在液化过程中它们也会下沉到沙子里。隐含的大变形通常是非拓扑的,即不保留邻域关系。因此,无网格方法似乎是合适的数值模拟工具。与离散元方法相比,无网格方法不仅可以使用精细的本构模型,而且可以使用可变的初始密度以及连续介质力学的全谱。在我们研究项目的第一阶段,我们开发了一种特殊的无网格方法,其特点是非常简单。它是点运动的一种特殊实现,其密度、速度和应力可以通过邻域配置的插值来获得。控制平衡方程采用强形式。两个代码已经开发,FPM(显式和线性化隐式)和SPARC(非线性)。在延续阶段,所获得的见解和成果将不仅用于模拟准静态(慢)变形,而且用于模拟动态(快速)变形,并将它们相互耦合。耦合问题的特征是固体/准流体/固体类型的相变。为了对这种转变进行建模,迄今为止应用的每种方法都必须得到加强,并且必须利用协同效应。耦合过程的清单很长,涉及到例如岩土结构的破坏(滑坡),筒仓排放,隧道坍塌等。最大的挑战是数学/物理性质:在相变(岩土工程中的极限状态)附近发生的颗粒材料的力学行为失去可控制性。这种损失以各种方式表现出来:计算不稳定性、病态矩阵、收敛问题等等,并且需要特殊的正则化方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluid Structure Interaction (FSI) in the MESHFREE Finite Pointset Method (FPM): Theory and Applications
MESHFREE 有限点集方法 (FPM) 中的流固耦合 (FSI):理论与应用
- DOI:10.1007/978-3-030-15119-5_5
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:J. Kuhnert;I. Michel;R. Mack
- 通讯作者:R. Mack
Numerically obtained vortices in granular media
颗粒介质中涡流的数值计算
- DOI:10.1002/nag.2984
- 发表时间:2019
- 期刊:
- 影响因子:4
- 作者:D. Kolymbas;I. Bathaeian
- 通讯作者:I. Bathaeian
Barodesy: a new constitutive frame for soils
Barodesy:新的土壤构成框架
- DOI:10.1680/geolett.12.00004
- 发表时间:2012
- 期刊:
- 影响因子:2.1
- 作者:D. Kolymbas
- 通讯作者:D. Kolymbas
The Finite Pointset Method (FPM) and an Application in Soil Mechanics
有限点集法(FPM)及其在土力学中的应用
- DOI:10.1007/978-3-642-32408-6_176
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:J. Kuhnert;I. Ostermann
- 通讯作者:I. Ostermann
Simulation of shear bands with Soft PARticle Code (SPARC) and FE
使用 Soft PARticle Code (SPARC) 和 FE 模拟剪切带
- DOI:10.1007/s13137-016-0091-2
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:B. Schneider-Muntau;C.-H. Chen;S.M.I. Bathaeian
- 通讯作者:S.M.I. Bathaeian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jörg Kuhnert其他文献
Dr. Jörg Kuhnert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Jörg Kuhnert', 18)}}的其他基金
Simulative analysis of the influence of cutting fluids on the machining process
切削液对加工过程影响的模拟分析
- 批准号:
403835841 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Anwendung der Finite Pointset Method (FPM) zur Simulation der Spanbildung
应用有限点集法(FPM)模拟切屑形成
- 批准号:
64900469 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Multiphase modelling of cutting fluid and its aerosols in cutting simulations using the Finite Pointset Method (FPM) for analysing the mechanisms of action (MultiCuttingFluid)
使用有限点集方法 (FPM) 对切削模拟中的切削液及其气溶胶进行多相建模,以分析作用机制 (MultiCuttingFluid)
- 批准号:
439626733 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
A new approach to reconstruct tsunami history: assessments based on identification and numerical modeling of erosional features
重建海啸历史的新方法:基于侵蚀特征识别和数值模拟的评估
- 批准号:
23H01252 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Understanding Bond Formation, Microstructural Development and Mechanical Properties in Cold Spray Additive Manufacturing – A Unified Experimental and Numerical Approach
职业:了解冷喷涂增材制造中的键形成、微观结构发展和机械性能——统一的实验和数值方法
- 批准号:
2145326 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating the eco-hydro-geomorphic functioning of natural salt marshes - A combined field and numerical modeling approach
研究天然盐沼的生态水文地貌功能——现场与数值模拟相结合的方法
- 批准号:
569990-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigating the role of block kinematics and brittle fracture in rock failure mechanisms: A combined multi-sensor remote sensing-numerical modelling approach.
研究块体运动学和脆性断裂在岩石破坏机制中的作用:一种组合的多传感器遥感数值建模方法。
- 批准号:
RGPIN-2020-03870 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Investigating the role of block kinematics and brittle fracture in rock failure mechanisms: A combined multi-sensor remote sensing-numerical modelling approach.
研究块体运动学和脆性断裂在岩石破坏机制中的作用:一种组合的多传感器遥感数值建模方法。
- 批准号:
RGPIN-2020-03870 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Non-equilibrium dynamics of integrable quantum systems: An algebro-geometric approach to quantum solitons with exact numerical solutions
可积量子系统的非平衡动力学:具有精确数值解的量子孤子的代数几何方法
- 批准号:
21K03398 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancing AM part printability at the early design stage: a numerical and data-driven approach of DfAM
在早期设计阶段增强增材制造零件的可打印性:DfAM 的数值和数据驱动方法
- 批准号:
2699355 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Quantifying permafrost degradation across the Canadian Arctic using in-situ monitoring and geothermal numerical modelling with a soil-structure-climate-interaction approach.
使用现场监测和地热数值模型以及土壤-结构-气候相互作用方法来量化加拿大北极地区的永久冻土退化。
- 批准号:
533914-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Failure process and optimal design of hybrid adhesive joints - a microscale experimental and numerical approach
混合粘合接头的失效过程和优化设计——微尺度实验和数值方法
- 批准号:
EP/T020695/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Novel NEK2 signaling pathways in myeloma progression
骨髓瘤进展中的新 NEK2 信号通路
- 批准号:
10410522 - 财政年份:2020
- 资助金额:
-- - 项目类别: