WEIGHTED REGION PROBLEMS: THEORY AND ALGORITHMS

加权区域问题:理论和算法

基本信息

  • 批准号:
    0635013
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

This research is concerned with the study of weighted region problems, and addresses both theory and design of algorithms suitable for implementation. In the weighted region framework the plane, or space, is partitioned into regions, each having associated a positive weight. This framework can be used for problems arising in various areas including planning rapid responses to natural disasters, military applications (surveillance, reachability, path planning), and newly emerging fields such as biomedical computing. The PI studies optimal path planning problems (k-link shortest paths, evacuation planning in urban areas in the context of weighted risk maps), nearest neighbor problems, and reverse problems in which the goal is to find unknown weights when the results to same sampling queries are available. For each problem, two key objectives are sought: (1) the study and discovery of fundamental properties, that can provide the basis for quantitative, qualitative and comparative evaluation of competing solutions and (2) the development of a software toolkit for solving the problem, which can be effectively used in practical applications. The leading intellectual merit of the research is to provide general and fundamental methods for a number of weighted region problems. Structures of a general nature are formulated. Efficient computing algorithms are developed. Significant restrictions on current approaches are relaxed. Broader impacts of this research include strengthening the interface between computer science and other sciences. The research has direct relevance to other areas of science, engineering and government. The PI maintains a web site on which research results are made known and available to the public at large.
本研究主要针对加权区域问题进行研究,并提出适合于实作的演算法理论与设计。在加权区域框架中,平面或空间被划分为区域,每个区域具有相关联的正权重。该框架可用于各种领域中出现的问题,包括规划对自然灾害的快速响应,军事应用(监视,可达性,路径规划),以及新兴领域,如生物医学计算。 PI研究最优路径规划问题(k-链路最短路径,加权风险地图背景下的城市地区疏散规划),最近邻问题和反向问题,其目标是在相同采样查询的结果可用时找到未知权重。对于每一个问题,寻求两个关键目标:(1)研究和发现的基本属性,可以提供定量,定性和比较评估的竞争解决方案的基础和(2)开发一个软件工具包解决问题,这可以有效地用于实际应用。该研究的主要学术价值是为一些加权区域问题提供了一般的和基本的方法。一般性质的结构制定。开发了有效的计算算法。放宽了对当前方法的重大限制。这项研究的更广泛影响包括加强计算机科学和其他科学之间的接口。这项研究与科学、工程和政府的其他领域直接相关。研究所设有一个网站,向公众公布和提供研究结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ovidiu Daescu其他文献

Two-dimensional closest pair problem: A closer look
  • DOI:
    10.1016/j.dam.2020.08.006
  • 发表时间:
    2020-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ovidiu Daescu;Ka Yaw Teo
  • 通讯作者:
    Ka Yaw Teo
New Results on Path Approximation
  • DOI:
    10.1007/s00453-003-1046-1
  • 发表时间:
    2003-10-24
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Ovidiu Daescu
  • 通讯作者:
    Ovidiu Daescu
Electrochemical breath profiling for early thoracic malignancy screening
用于早期胸部恶性肿瘤筛查的电化学呼吸特征分析
  • DOI:
    10.1016/j.sbsr.2025.100815
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Anirban Paul;Kordel France;Avi Bhatia;Muhanned Abu-Hijleh;Ovidiu Daescu;Ruby Thapa;Rhoda Annoh Gordon;Shalini Prasad
  • 通讯作者:
    Shalini Prasad
Line facility location in weighted regions
  • DOI:
    10.1007/s10878-009-9272-3
  • 发表时间:
    2009-10-27
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Yam Ki Cheung;Ovidiu Daescu
  • 通讯作者:
    Ovidiu Daescu

Ovidiu Daescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ovidiu Daescu', 18)}}的其他基金

I/UCRC Phase I: iPerform - I/UCRC for Assistive Technologies to Enhance Human Performance
I/UCRC 第一阶段:iPerform - I/UCRC 用于增强人类表现的辅助技术
  • 批准号:
    1439718
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Planning Grant: I/UCRC for Assistive Technologies to Enhance Human Performance
规划补助金:I/UCRC 用于提高人类绩效的辅助技术
  • 批准号:
    1338932
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CPS: Small: Collaborative Research: Tumor and Organs at Risk Motion: An Opportunity for Better DMLC IMRT Delivery Systems
CPS:小型:合作研究:肿瘤和处于危险中的器官运动:更好的 DMLC IMRT 输送系统的机会
  • 批准号:
    1035460
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Outlier Identification and Handling in Computational Geometry Problems
计算几何问题中的异常值识别和处理
  • 批准号:
    0430366
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

联芳环Bay-region稠合多环芳烃的构筑及有机半导体性能研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Present Status and Problems of SMEs in the Tohoku Region after the Great East Japan Earthquake
东日本大地震后东北地区中小企业的现状及问题
  • 批准号:
    26510009
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of and analysis on household statistical micro data bases for the study on poverty problems in the Asia region
亚洲地区贫困问题研究的家庭统计微观数据库的构建与分析
  • 批准号:
    21330050
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Heat and Fluid Flow Problems in a Multiply-Connected Region, using a Conformal Mapping
使用共形映射分析多重连接区域中的热流和流体流动问题
  • 批准号:
    20540108
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Structural Problems and the political subject of coastal fishery in the disadvantaged region
弱势地区沿海渔业的结构性问题与政治主体
  • 批准号:
    19780167
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Current Situation and problems of educational network for sustainable international exchange in Asian region
亚洲地区可持续国际交流教育网络现状及问题
  • 批准号:
    19402002
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical methods for wave propagation phenomena in unbounded region and its applications to shape design problems
无界区域波传播现象的数值方法及其在形状设计问题中的应用
  • 批准号:
    18540114
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive study on environmental problems in Japan and Asia-Pacific region with the historical study on the theories and research methodologies of Japanese environmental Sociology.
通过对日本环境社会学理论和研究方法的历史研究,对日本及亚太地区的环境问题进行综合研究。
  • 批准号:
    15330111
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STUDIES OF RECEPTIVITY AND LAMINAR-FLOW-CONTROL PROBLEMS FOR THE LEADING-EDGE-REGION BOUNDARY LAYER OF THREE-DIMENSIONAL WING
三维机翼前缘区边界层接受性及层流控制问题研究
  • 批准号:
    08455465
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Preliminary study on synergetic countermeasures on global environmental problems in the Asia-Pacific region.
亚太地区全球环境问题协同对策初步研究.
  • 批准号:
    08680601
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Human Rights Situations in the Asian Region and Problems to be Solved
亚洲地区人权状况及亟待解决的问题
  • 批准号:
    61520008
  • 财政年份:
    1986
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了