CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
基本信息
- 批准号:0643931
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROPOSAL NUMBER.: CBET-0643931PRINCIPAL INVESTIGATOR: McIntosh, StevenINSTITUTION: University of VirginiaCAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon SolidOxide Fuel Cells Intellectual MeritA number of technologies are under development to increase the efficiency of power generation systems. One of the most promising for large scale and distributed systems is the Solid Oxide Fuel Cell (SOFC). SOFCs utilize an oxygen anion conducting electrolyte and may theoretically operate on any combustible fuel supplied to the fuel electrode, the anode. Current SOFC are unnecessarily restricted to hydrogen fuel due to anode materials limitations. The development of SOFC that efficiently convert both traditional and bio-derived hydrocarbon fuels to electrical power would be of great benefit to society. Progress has been made in developing new oxide-based anodes; however, the catalytic properties of these novel materials are note well understood. A high performance anode material must posses both high oxygen ion and electron conductivity and catalytic activity towards fuel oxidation. The overall research goal is to understand the coupled ion transport and catalytic processes occurring in complex oxides and relate these to the material structure and composition.Three distinct approaches will be taken. First, a pulse reactor technique will be utilized to investigate the nature of the active site and reaction mechanism for hydrocarbon oxidation on novel SOFC anode materials. Second, thin film electrodes with well defined structure, composition and geometry will be fabricated and operated as model SOFCs. Combined electrochemical and catalytic measurements on these model systems will investigate the influence of applied potential, film microstructure and ionic flux on the surface reaction rate and mechanism. Finally, lab-scale SOFCs will be fabricated to demonstrate the application of this technology and relate fuel cell performance to the fundamental anode material properties. The work will be supplemented by detailed characterization of the microstructure and composition of the material surface and bulk.Broader ImpactThe proposed research is integrated with an educational component that incorporates energy technology education into the University of Virginia curriculum. A senior level undergraduate course will be developed that explores both technological and societal issues surrounding energy use. This will be supplemented by a new undergraduate laboratory fuel cell experiment. A freshman engineering course will allow students to design and build novel energy-related devices. The students will present their work at university open days to share their ideas and designs with the public. In addition, the graduate chemical reaction engineering class will be revised to include the fundamental concepts behind emerging energy technologies.The development of an efficient direct-hydrocarbon fuel cell will have a significant impact upon energy production in the US. The final research goal of producing a lab-scale fuel cell operating on readily available fuels will provide immediate outreach to the public through a tangible scientific discovery. Understanding coupled transport and catalysis in oxides has broader application in the fields of chemical sensors, dense oxide membranes and the emerging field of nano-ionics.
提案编号:CBET-0643931 主要研究员:McIntosh, Steven 机构:弗吉尼亚大学 职业:下一代直接碳氢化合物固体氧化物燃料电池催化的新方法 智力优点 正在开发许多技术来提高发电系统的效率。最有前途的大规模分布式系统之一是固体氧化物燃料电池(SOFC)。 SOFC 使用氧阴离子传导电解质,并且理论上可以利用供应到燃料电极(阳极)的任何可燃燃料来运行。由于阳极材料的限制,目前的 SOFC 不必要地局限于氢燃料。开发能够有效地将传统和生物衍生碳氢化合物燃料转化为电能的固体氧化物燃料电池将为社会带来巨大利益。 新型氧化物阳极开发取得进展;然而,人们对这些新型材料的催化特性已很了解。高性能阳极材料必须具有高氧离子和电子电导率以及对燃料氧化的催化活性。总体研究目标是了解复杂氧化物中发生的耦合离子传输和催化过程,并将这些过程与材料结构和成分联系起来。将采取三种不同的方法。首先,将利用脉冲反应器技术研究新型 SOFC 阳极材料上碳氢化合物氧化的活性位点性质和反应机制。其次,具有明确结构、成分和几何形状的薄膜电极将被制造并作为模型 SOFC 运行。对这些模型系统的电化学和催化测量相结合,将研究施加电位、薄膜微观结构和离子通量对表面反应速率和机制的影响。最后,将制造实验室规模的 SOFC,以展示该技术的应用,并将燃料电池性能与基本阳极材料特性联系起来。这项工作还将通过对材料表面和本体的微观结构和成分的详细表征进行补充。更广泛的影响拟议的研究与将能源技术教育纳入弗吉尼亚大学课程的教育部分相结合。将开发一门高级本科课程,探讨与能源使用相关的技术和社会问题。新的本科生实验室燃料电池实验将对此进行补充。新生工程课程将允许学生设计和建造新颖的能源相关设备。学生们将在大学开放日展示他们的作品,与公众分享他们的想法和设计。此外,研究生化学反应工程课程将进行修订,以纳入新兴能源技术背后的基本概念。高效直接碳氢化合物燃料电池的开发将对美国的能源生产产生重大影响。最终的研究目标是生产一种使用现成燃料运行的实验室规模的燃料电池,这将通过切实的科学发现立即向公众提供服务。 了解氧化物中的耦合传输和催化在化学传感器、致密氧化物膜和新兴的纳米离子领域具有更广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven McIntosh其他文献
Revealing hidden nanoscale electrocatalysis
揭示隐藏的纳米级电催化作用
- DOI:
10.1038/s41929-025-01326-5 - 发表时间:
2025-04-25 - 期刊:
- 影响因子:44.600
- 作者:
Steven McIntosh - 通讯作者:
Steven McIntosh
Steven McIntosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven McIntosh', 18)}}的其他基金
Collaborative Research: Electrochemical Production of NH3 Using Proton-Conducting Ceramic Electrolytes
合作研究:利用质子传导陶瓷电解质电化学生产NH3
- 批准号:
1803758 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EFRI-PSBR: Continuous Liquid Fuel Production via Scalable Biosynthesis of Enzyme-Quantum Dot Hybrid Photocatalysts
EFRI-PSBR:通过酶-量子点混合光催化剂的可扩展生物合成连续生产液体燃料
- 批准号:
1332349 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
- 批准号:
1101814 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
- 批准号:
1101817 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
- 批准号:
0967829 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
- 批准号:
2338752 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Development of a Novel Approach for the Identification of Toxic Byproducts and their Precursors in Oxidative Drinking Water Treatment
职业:开发一种识别氧化饮用水处理中有毒副产物及其前体的新方法
- 批准号:
2143152 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: An Inclusive Approach to Diversity Inspired Design on Novel 3D Printed Electric Motors
职业生涯:新型 3D 打印电动机的多样性启发设计的包容性方法
- 批准号:
2045776 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Nanoflow RPLC-CZE-MS/MS: a novel approach for deep and highly sensitive bottom-up proteomics
职业:Nanoflow RPLC-CZE-MS/MS:一种深度、高灵敏度自下而上蛋白质组学的新方法
- 批准号:
1846913 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Mechanical unfolding and refolding of multidomain proteins as a new signaling mechanism, studied using a novel single molecule approach
职业:使用新型单分子方法研究多域蛋白的机械展开和重折叠作为一种新的信号传导机制
- 批准号:
1846143 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Opening the Door to Emerging Functional Multicomponent Oxides via a Novel Crystal Growth Approach
职业生涯:通过新颖的晶体生长方法打开新兴功能性多组分氧化物的大门
- 批准号:
1846935 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Novel human-in-the loop approach to increase locomotor learning.
职业:提高运动学习的新型人机交互方法。
- 批准号:
1847891 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Three Region nLC-MS/MS Analysis: A Novel and Rapid Approach to Evaluate Molecular Penetration
职业:三区域 nLC-MS/MS 分析:一种评估分子渗透的新颖且快速的方法
- 批准号:
1827084 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Three Region nLC-MS/MS Analysis: A Novel and Rapid Approach to Evaluate Molecular Penetration
职业:三区域 nLC-MS/MS 分析:一种评估分子渗透的新颖且快速的方法
- 批准号:
1351595 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant














{{item.name}}会员




