Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers

用于质子传导固体氧化物燃料电池和电解槽的增强型电极

基本信息

  • 批准号:
    1101817
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

0967829McIntoshMatching supply with demand is a significant issue with the large-scale deployment of intermittent renewable energy systems such as wind and solar power. For example, the peak power generated when the wind blows must be matched to periods of peak demand. This necessitates the development of large and efficient means of temporary power storage. One attractive option is a high performance, reversible, and efficient fuel cell/electrolyzer system. This system would operate in electrolyzer mode to store electrical energy as chemical energy (hydrogen) during periods of plentiful power generation. Operation can then be reversed to supply electrical energy during periods of peak demand.Intellectual MeritProton conducting oxides have potential application in efficient high temperature solid oxide fuel cells and electrolyzers. While the transport properties of these materials are being studied in increasing detail, there is currently very limited knowledge regarding the catalytic and electrocatalytic activity of this class of material. Reduction and oxidation (redox) of surface oxygen sites by the Mars-van Krevelen mechanism is a central step in catalytic and electrocatalytic reaction on oxygen ion conducting materials. The central hypothesis of the proposed research is that an analogous proton-based Mars-van Krevelen mechanism will be a critical step in the catalytic cycle on proton conducting oxides. The central route to enhanced activity will be doping of transition metals both into the oxide lattice and as nanoparticles on the oxide surface. The hypothesized electrocatalytic mechanism will be validated by isotopic transient studies and the measured reaction kinetics related to proton incorporation thermodynamics, transport properties and crystal structure. Proton conducting solid oxide fuel cells and electrolyzers will be fabricated and tested to demonstrate the links between electrocatalysis and electrode function.The demonstration of a proton based Mars-van Krevelen mechanism will provide a fundamental basis from which the performance of proton conducting oxide electrodes may be interpreted and enhanced.Broader ImpactsReplacing oxygen ion conductors with proton conducting oxides can provide a new direction for heterogeneous catalyst development. The results of this multidisciplinary study will be disseminated to the catalysis, electrochemistry, and solid state ionics communities through journal publications and conference presentations. Undergraduate students will play an active role in this research through clearly identified, focused research projects. The importance and potential impact of ongoing scientific advances in the area of energy and the environment will be conveyed to the general public via "Energy days" to be held at the University of Virginia. Faculty and graduate and undergraduate students from across campus actively engaged in this field will provide technology demonstrations and discussion points. A focused approach to engaging middle school students will be developed by expanding a small existing program. The PI, as well as graduate students in the PI's laboratory, will spend a time at local middle schools introducing the concept of engineering to students through a series of hands-on projects. These will be focused on energy and sustainability concepts with learning outcomes reinforced through classroom education.
随着间歇性可再生能源系统(如风能和太阳能)的大规模部署,供需匹配是一个重大问题。例如,风吹时产生的峰值功率必须与需求峰值相匹配。这就需要开发大型和高效的临时电力存储手段。一个有吸引力的选择是高性能,可逆,高效的燃料电池/电解槽系统。该系统将在电解槽模式下运行,以便在发电充足时将电能存储为化学能(氢)。然后,操作可以逆转,以在需求高峰期间提供电能。质子导电氧化物在高效高温固体氧化物燃料电池和电解槽中具有潜在的应用前景。虽然这些材料的输运性质正在得到越来越详细的研究,但目前关于这类材料的催化和电催化活性的知识非常有限。在氧离子导电材料的催化和电催化反应中,火星-范-克雷文机制对表面氧位点的还原和氧化(氧化还原)是一个核心步骤。提出的研究的中心假设是,类似的基于质子的Mars-van Krevelen机制将是质子导电氧化物催化循环的关键步骤。增强活性的主要途径是将过渡金属掺杂到氧化物晶格中,并在氧化物表面以纳米颗粒的形式掺杂。假设的电催化机制将通过同位素瞬态研究和与质子结合热力学、输运性质和晶体结构相关的测量反应动力学来验证。将制造和测试质子导电固体氧化物燃料电池和电解槽,以证明电催化和电极功能之间的联系。基于质子的Mars-van Krevelen机制的演示将为解释和提高质子导电氧化物电极的性能提供基础基础。更广泛的影响用质子导电氧化物代替氧离子导体为多相催化剂的发展提供了新的方向。这项多学科研究的结果将通过期刊出版物和会议报告传播到催化、电化学和固态离子学界。本科生将通过明确确定的、重点突出的研究项目,在这项研究中发挥积极作用。能源和环境领域正在进行的科学进步的重要性和潜在影响将通过在弗吉尼亚大学举行的“能源日”向公众传达。教师和研究生和本科生从整个校园积极参与这一领域将提供技术演示和讨论点。将通过扩大现有的一个小型项目,开发一种吸引中学生的重点方法。PI和PI实验室的研究生将花时间在当地中学,通过一系列实践项目向学生介绍工程的概念。这些课程将侧重于能源和可持续发展概念,并通过课堂教育加强学习成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven McIntosh其他文献

Revealing hidden nanoscale electrocatalysis
揭示隐藏的纳米级电催化作用
  • DOI:
    10.1038/s41929-025-01326-5
  • 发表时间:
    2025-04-25
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Steven McIntosh
  • 通讯作者:
    Steven McIntosh

Steven McIntosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven McIntosh', 18)}}的其他基金

Collaborative Research: Electrochemical Production of NH3 Using Proton-Conducting Ceramic Electrolytes
合作研究:利用质子传导陶瓷电解质电化学生产NH3
  • 批准号:
    1803758
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EFRI-PSBR: Continuous Liquid Fuel Production via Scalable Biosynthesis of Enzyme-Quantum Dot Hybrid Photocatalysts
EFRI-PSBR:通过酶-量子点混合光催化剂的可扩展生物合成连续生产液体燃料
  • 批准号:
    1332349
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
  • 批准号:
    1101814
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
  • 批准号:
    0967829
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
  • 批准号:
    0643931
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

Development of binder-free electrodes for novel proton batteries
新型质子电池无粘合剂电极的开发
  • 批准号:
    2863973
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Proton exchange membrane water electrolysers with thin film nanostructured electrodes
具有薄膜纳米结构电极的质子交换膜水电解槽
  • 批准号:
    2750980
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Performance evaluation of electrodes in intermediate-temperature solid oxide fuel cells with consideration of internal current leakage in proton-hole mixed conducting electrolytes
考虑质子空穴混合导电电解质内漏电流的中温固体氧化物燃料电池电极性能评估
  • 批准号:
    20J10149
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
  • 批准号:
    2004636
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidation of the Grotthuss Topochemistry in Reticular Electrodes for Fast Proton Batteries
合作研究:阐明快速质子电池网状电极中的 Grotthuss 拓扑化学
  • 批准号:
    2005165
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Inorganic proton conductors for high performance Fe/N/C based gas diffusion electrodes
用于高性能 Fe/N/C 气体扩散电极的无机质子导体
  • 批准号:
    439471-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 28万
  • 项目类别:
    Engage Grants Program
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
  • 批准号:
    0967829
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Computer Simulation of Proton Discharge on Electrodes
电极上质子放电的计算机模拟
  • 批准号:
    183318904
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Units
Carbon nanotube-based three-dimensional electrodes for proton exchange membrane fuel cells
用于质子交换膜燃料电池的碳纳米管三维电极
  • 批准号:
    350728-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 28万
  • 项目类别:
    Collaborative Research and Development Grants
Electrochemical catalyzation of proton exchange membrane fuel cell electrodes
质子交换膜燃料电池电极的电化学催化
  • 批准号:
    8823-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了