EFRI-PSBR: Continuous Liquid Fuel Production via Scalable Biosynthesis of Enzyme-Quantum Dot Hybrid Photocatalysts
EFRI-PSBR:通过酶-量子点混合光催化剂的可扩展生物合成连续生产液体燃料
基本信息
- 批准号:1332349
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTIntellectual Merit: The focus of this solicitation was to develop concepts for a photosynthetic biorefinery, in which micro-organisms are employed in the conversion of sunlight and carbon dioxide (CO2) to produce biofuel and bioproduct species. A systems approach is needed, and the system should be scalable. Life cycle analysis should be a tool used to evaluate various approaches. These components have been organized in an alternative manner in a project awarded jointly by the NSF Emerging Frontiers in Research and Innovation Division and the Catalysis and Biocatalysis Program of the CBET Division to the team of scientists and engineers of Professors Steven McIntosh, Bryan W. Berger, Robert Skibbens and Christopher J. Kiely of Lehigh University, Bethlehem, PA, and Ivan V. Korendovych of Syracuse University, Syracuse, NY. The investigative team proposes to create a novel bio-synthesized enzyme-quantum dot hybrid photocatalyst for the direct production of methanol fuel from sunlight, water, and carbon dioxide. The key components of this system include (1) quantum dots (QDs) as electron donors and (2) CO2-reducing enzymes for continuous conversion of CO2 and water to MeOH. Absorption of photons by QDs will generate electron-hole exciton pairs. The hole will be harnessed for water splitting to form protons, while the electron will be utilized as the energy source for the enzymatic CO2 reduction steps. This enzymatic process consumes the protons formed from water splitting, completing the catalytic cycle. Combining these two components (QDs and enzymes) in the proposed continuous flow process will create a cost-effective technology for the large-scale production of renewable liquid fuels.QDs will be synthesized using a unique bacterial system that facilitates precise control over particle size and corresponding wavelength range of the harvested light. In contrast to conventional, batch QD chemical synthesis, in which high temperatures, pressures and toxic solvents are required, the team approach allows for direct, extracellular production of water-soluble QDs directly from culture supernatants, with a target of reducing the cost of these materials by two orders of magnitude by removing the need for complex and expensive chemical processing steps, which is critical for achieving a cost-effective and scalable solution for direct liquid fuel production. A yeast-based system will be engineered to continuously generate the three enzymes that sequentially catalyze the reduction of carbon dioxide to methanol. Using a protein engineering approach, the PIs will modify these enzymes to self-assemble into a heterotrimeric complex on the surface of the quantum dot. These self-assembling enzyme catalysts overcome the current requirements for expensive precious metal based photocatalysts. Furthermore, the integrated enzyme-QD catalyst will achieve high selectivity for desired liquid fuel products by eliminating non-selective side reactions occurring with precious metal catalysts.Broader Impacts: Both scalable photocatalytic MeOH production and low cost QD fabrication offer significant long term impact on society and the US economy. A low cost, green fuel, produced continuously at commercial scale from carbon dioxide, sunlight, and water has obvious potential. The application of QD technology in information technology, lighting, and medicine is currently limited by the high cost of these specialized, crystalline nanomaterials. Reducing their production cost has the potential to foster new domestic industries. Likewise, the modular nature of the enzyme-QD hybrid nanocatalyst platform opens up new opportunities for scalable synthesis of other high-value chemical products from CO2 and sunlight.
摘要智力优势:这一招标的重点是开发光合生物精炼厂的概念,其中微生物被用于转化阳光和二氧化碳(CO2),以生产生物燃料和生物产品。需要一种系统方法,而且该系统应该是可扩展的。生命周期分析应成为评价各种方法的工具。 这些组成部分已被组织在一个由NSF新兴前沿研究和创新部门和CBET部门的催化和生物催化计划联合授予的项目中,以替代的方式组织在Steven McIntosh教授,Bryan W.伯杰,罗伯特Skibbens和克里斯托弗J基利哈伊大学,伯利恒,宾夕法尼亚州和伊万V Korendovych的锡拉丘兹大学,锡拉丘兹,纽约州。该研究小组建议创建一种新型的生物合成酶-量子点混合光催化剂,用于从阳光,水和二氧化碳中直接生产甲醇燃料。该系统的关键组件包括(1)作为电子供体的量子点(QD)和(2)用于将CO2和水连续转化为MeOH的CO2还原酶。量子点对光子的吸收将产生电子-空穴激子对。空穴将用于水裂解以形成质子,而电子将用作酶促CO2还原步骤的能量来源。这个酶过程消耗水分解形成的质子,完成催化循环。将这两种成分(量子点和酶)结合在拟议的连续流工艺中,将为可再生液体燃料的大规模生产创造一种具有成本效益的技术。量子点将使用独特的细菌系统合成,该系统有助于精确控制颗粒大小和相应的波长范围。与需要高温、高压和有毒溶剂的传统的批量QD化学合成相比,该团队的方法允许直接从培养上清液中直接在细胞外生产水溶性QD,目标是通过消除对复杂和昂贵的化学处理步骤的需要,将这些材料的成本降低两个数量级,这对于实现用于直接液体燃料生产的成本有效和可扩展的解决方案是关键的。一个基于酵母的系统将被设计成连续产生三种酶,依次催化二氧化碳还原为甲醇。使用蛋白质工程方法,PI将修饰这些酶,使其在量子点表面自组装成异源三聚体复合物。这些自组装酶催化剂克服了目前对昂贵的贵金属基光催化剂的要求。此外,集成酶-QD催化剂将通过消除贵金属催化剂发生的非选择性副反应,实现对所需液体燃料产品的高选择性。更广泛的影响:可扩展的光催化甲醇生产和低成本QD制造都对社会和美国经济产生了重大的长期影响。一种低成本的绿色燃料,以商业规模从二氧化碳、阳光和水连续生产,具有明显的潜力。量子点技术在信息技术、照明和医学中的应用目前受到这些专门的结晶纳米材料的高成本的限制。降低其生产成本有可能促进新的国内产业。同样,酶-量子点混合纳米催化剂平台的模块化性质为从二氧化碳和阳光中可规模化合成其他高价值化学产品开辟了新的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven McIntosh其他文献
Revealing hidden nanoscale electrocatalysis
揭示隐藏的纳米级电催化作用
- DOI:
10.1038/s41929-025-01326-5 - 发表时间:
2025-04-25 - 期刊:
- 影响因子:44.600
- 作者:
Steven McIntosh - 通讯作者:
Steven McIntosh
Steven McIntosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven McIntosh', 18)}}的其他基金
Collaborative Research: Electrochemical Production of NH3 Using Proton-Conducting Ceramic Electrolytes
合作研究:利用质子传导陶瓷电解质电化学生产NH3
- 批准号:
1803758 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
- 批准号:
1101814 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
- 批准号:
1101817 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Enhanced Electrodes for Proton Conducting Solid Oxide Fuel Cells and Electrolyzers
用于质子传导固体氧化物燃料电池和电解槽的增强型电极
- 批准号:
0967829 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: A Novel Approach to Catalysis for Next Generation Direct-Hydrocarbon Solid Oxide Fuel Cells
职业生涯:下一代直接碳氢化合物固体氧化物燃料电池的催化新方法
- 批准号:
0643931 - 财政年份:2007
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI-PSBR: Channeling Carbon Flows in Algal Productions Systems from the Molecular to Bioprocessing Scales
EFRI-PSBR:将藻类生产系统中的碳流从分子规模引导至生物加工规模
- 批准号:
1332344 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: Biodiversity & Biofuels: Finding Win-Win Scenarios for Conservation and Energy Production in the Next Century
EFRI-PSBR:生物多样性
- 批准号:
1332342 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: Closing the loop- towards a PSBR design framework for self-sustained marine microalgal-based fuel production
EFRI-PSBR:闭环 - 实现 PSBR 设计框架,用于自我维持的海洋微藻燃料生产
- 批准号:
1332341 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: Integrated design of cyanobacterial biorefineries
EFRI-PSBR:蓝藻生物精炼厂的集成设计
- 批准号:
1332404 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: The Diatom-based Photosynthetic Biorefinery
EFRI-PSBR:基于硅藻的光合生物精炼厂
- 批准号:
1240488 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: Cyanobacterial Biorefineries
EFRI-PSBR:蓝藻生物精炼厂
- 批准号:
1240268 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-PSBR: Microalgae Lab-on-Chip Photobioreactor Platform for Genetic Screening and Metabolic Analysis Leading to Scalable Biofuel Production
EFRI-PSBR:用于基因筛选和代谢分析的微藻片上实验室光生物反应器平台,可实现可扩展的生物燃料生产
- 批准号:
1240478 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant














{{item.name}}会员




