Collaborative: Plasma deposition of thin films on nanowires and particles
合作:纳米线和颗粒上薄膜的等离子体沉积
基本信息
- 批准号:0651362
- 负责人:
- 金额:$ 17.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the low-pressure plasma deposition onto nanoparticles and nanowires of nanometer-scale films (highly uniform thicknesses from under 10 nanometers to 100 nanometers) having high density, low porosity, and thickness. The proposed process allows high controllability of the thickness and structure of the film. The novelty of the present approach lies in taking advantage of the phenomenon of electrostatic trapping to produce a suspension of nanowires/nanoparticles within a chemically reacting plasma. This approach allows the nanowires/nanoparticles to remain in the reactor long enough to deposit films of desirable thickness and makes it possible to transfer the extensive know-how about plasma processing to the surface treatment of nanowires. By combining the experimental study with a computational component, the investigators will develop a more detailed fundamental understanding of the various physical and chemical phenomena involved in the plasma-based surface deposition. In the modeling, they will create multiscale models that incorporate molecular interactions, electrostatics, chemical kinetics and transport, bounded by the macroscopic dimensions of the reactor. After establishing model validity based on the experiments, it will be used subsequently to provide physical insight and feedback for improvement of the design and interpretation of the results of the experiments.CBET-0651362 Mashayek This fundamental research is targeting the synthesis of core-shell structures that have potential applications in the areas of biosensing and nanoelectronics. Nanoparticles and nanowires are among the main building blocks of nanotechnology. These nanostructures and assemblies of them exhibit many unique optical, mechanical, and electrical properties that can be exploited in applications such as biological sensing and ultra-high-density electronics. Their range of application can be significantly extended by altering their surfaces through coating with other materials to improve properties such as adhesion, hydrophobicity, hydrophilicity, printability, and corrosion resistance. By establishing a collaborative team, focused on basic science of plasma physics, the project is anticipated to yield benefits that will extend beyond the specific research goals of the program. The award supports two graduate students who will be trained in an interdisciplinary area. It will further supports undergraduate research opportunities and will develop educational modules and hands-on activities on concepts related to thin film deposition onto nanoparticles and nanowires. In addition to publishing the research in scholarly journals, results will also be disseminated as educational animations demonstrating various processes in the plasma reactor.
本项目致力于将低压等离子体沉积在纳米级薄膜(厚度从10纳米到100纳米高度均匀)的纳米颗粒和纳米线上,具有高密度、低孔隙度和厚度。所提出的工艺允许薄膜的厚度和结构具有高度可控性。本方法的新颖之处在于利用静电捕获现象在化学反应的等离子体中产生纳米线/纳米颗粒悬浮液。这种方法允许纳米线/纳米颗粒在反应器中停留足够长的时间,以沉积所需厚度的薄膜,并使等离子体处理的广泛技术知识转移到纳米线的表面处理成为可能。通过将实验研究与计算组件相结合,研究人员将对等离子体表面沉积中涉及的各种物理和化学现象有更详细的基本理解。在建模过程中,他们将创建包含分子相互作用、静电学、化学动力学和传输的多尺度模型,这些模型受到反应器宏观尺寸的限制。在基于实验建立模型效度后,随后将用于提供物理洞察和反馈,以改进实验设计和解释结果。这项基础研究的目标是在生物传感和纳米电子学领域有潜在应用的核-壳结构的合成。纳米粒子和纳米线是纳米技术的主要组成部分。这些纳米结构及其组件表现出许多独特的光学、机械和电学特性,可用于生物传感和超高密度电子学等应用。通过涂覆其他材料来改变其表面,以改善附着力、疏水性、亲水性、印刷性和耐腐蚀性等性能,可以显著扩展其应用范围。通过建立一个合作团队,专注于等离子体物理的基础科学,该项目预计将产生超出该计划特定研究目标的收益。该奖项支持两名研究生,他们将在跨学科领域接受培训。它将进一步支持本科生的研究机会,并将开发与纳米颗粒和纳米线薄膜沉积相关的教育模块和实践活动。除了在学术期刊上发表研究成果外,研究结果还将以教育动画的形式传播,展示等离子体反应器中的各种过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farzad Mashayek其他文献
Dynamic Explicit Modal Filtering for Large-Eddy Simulation of Turbulent Flows with Spectral Element Method
谱元法大涡湍流模拟的动态显式模态滤波
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mohammadmahdi Ranjbar;J. Komperda;Farzad Mashayek - 通讯作者:
Farzad Mashayek
emIn situ/em formation of stable solid electrolyte interphase with high ionic conductivity for long lifespan all-solid-state lithium metal batteries
用于长寿命全固态锂金属电池的具有高离子电导率的稳定固体电解质界面的原位形成
- DOI:
10.1016/j.ensm.2023.02.009 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:20.200
- 作者:
Vahid Jabbari;Vitaliy Yurkiv;Md Golam Rasul;Abhijit H. Phakatkar;Farzad Mashayek;Reza Shahbazian-Yassar - 通讯作者:
Reza Shahbazian-Yassar
Advancing battery safety: Integrating multiphysics and machine learning for thermal runaway prediction in lithium-ion battery module
- DOI:
10.1016/j.jpowsour.2024.235015 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Basab Ranjan Das Goswami;Yasaman Abdisobbouhi;Hui Du;Farzad Mashayek;Todd A. Kingston;Vitaliy Yurkiv - 通讯作者:
Vitaliy Yurkiv
MOOSE-based finite element framework for mass-conserving two-phase flow simulations on adaptive grids using the diffuse interface approach and a Lagrange multiplier
基于驼鹿(MOOSE)的有限元框架,用于在自适应网格上使用扩散界面方法和拉格朗日乘数进行质量守恒的两相流模拟
- DOI:
10.1016/j.jcp.2025.113755 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:3.800
- 作者:
Ali Mostafavi;Mohammadmahdi Ranjbar;Vitaliy Yurkiv;Alexander L. Yarin;Farzad Mashayek - 通讯作者:
Farzad Mashayek
Deep learning modeling in microscopy imaging: A review of materials science applications
显微镜成像中的深度学习建模:材料科学应用综述
- DOI:
10.1016/j.pmatsci.2023.101165 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:40.000
- 作者:
Marco Ragone;Reza Shahabazian-Yassar;Farzad Mashayek;Vitaliy Yurkiv - 通讯作者:
Vitaliy Yurkiv
Farzad Mashayek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farzad Mashayek', 18)}}的其他基金
GOALI: Controlled Coating via Charged Droplet Impact and Deposition on Dielectric and Conducting Surfaces
GOALI:通过带电液滴撞击和沉积在介电和导电表面上来控制涂层
- 批准号:
2312197 - 财政年份:2022
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Fundamental Understanding of SEI Effects on Li Dendrite Formation and Growth
SEI 对锂枝晶形成和生长影响的基本理解
- 批准号:
2313395 - 财政年份:2022
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
GOALI: Controlled Coating via Charged Droplet Impact and Deposition on Dielectric and Conducting Surfaces
GOALI:通过带电液滴撞击和沉积在介电和导电表面上来控制涂层
- 批准号:
1906497 - 财政年份:2019
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Fundamental Understanding of SEI Effects on Li Dendrite Formation and Growth
SEI 对锂枝晶形成和生长影响的基本理解
- 批准号:
1805938 - 财政年份:2018
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Building HPRNet (High-Performance Research Network) for Advancement of Data Intensive Research and Collaboration
CC* 网络基础设施:构建 HPRNet(高性能研究网络)以推进数据密集型研究和协作
- 批准号:
1659255 - 财政年份:2017
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
MRI: Acquisition of SABER: Shared Analytics and Big-data Enterprise Resource
MRI:收购 SABRE:共享分析和大数据企业资源
- 批准号:
1626432 - 财政年份:2016
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
GOALI: Liquid Charging in Electrostatic Atomizers for Coating and Painting Applications
GOALI:用于涂料和喷漆应用的静电雾化器中的液体充电
- 批准号:
1505276 - 财政年份:2015
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
U.S.-UK Workshop on Electrostatic Atomization of Electrically-Insulating Liquids
美英电绝缘液体静电雾化研讨会
- 批准号:
0652352 - 财政年份:2007
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Collaborative Research: A Low-Pressure Plasma Process for Nano-Coating of Micron- and Nano-Sized Particles
合作研究:微米级和纳米级颗粒纳米涂层的低压等离子体工艺
- 批准号:
0422900 - 财政年份:2005
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Development of Kinetic-Approach-Based Two-Fluid Models for Two-Phase Turbulent Flows
基于动力学方法的两相湍流双流体模型的开发
- 批准号:
0237951 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
相似国自然基金
旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Plasma Jet Synthesis and Deposition of Metal Oxide Materials
金属氧化物材料的等离子射流合成与沉积
- 批准号:
2901960 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Studentship
I-Corps: Plasma Deposition of Metal and Metal-oxide Materials on Flexible Substrates
I-Corps:柔性基板上金属和金属氧化物材料的等离子沉积
- 批准号:
2348546 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
CAREER: Atmospheric-Pressure Manufacturing of Nanocrystalline Diamonds by Plasma-Assisted Flat Flame Vapor Deposition
职业:通过等离子体辅助平面火焰气相沉积法常压制造纳米晶金刚石
- 批准号:
2238235 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Identification of plasma lipoprotein proteins and lipids as biomarkers of innate-immunity and vascular contributions to Alzheimer's disease and Alzheimer's disease-related dementias in older adults
鉴定血浆脂蛋白和脂质作为老年人阿尔茨海默病和阿尔茨海默病相关痴呆的先天免疫和血管贡献的生物标志物
- 批准号:
10660037 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
MRI: Track 1 Acquisition of an Atomic-Layer Deposition System with Remote Plasma Activation of Surface Processes
MRI:轨道 1 采集具有表面过程远程等离子体激活的原子层沉积系统
- 批准号:
2320739 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Adipose MTP and FIT2 in the regulation of plasma lipids, obesity and atherosclerosis
脂肪MTP和FIT2在血脂、肥胖和动脉粥样硬化调节中的作用
- 批准号:
10628990 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Plasma-surface interaction in plasma-enhanced atomic-layer deposition of two-dimensional materials
二维材料等离子体增强原子层沉积中的等离子体-表面相互作用
- 批准号:
23KF0049 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Inductively Coupled Plasma Chemical Vapour Deposition (ICP-CVD)
感应耦合等离子体化学气相沉积 (ICP-CVD)
- 批准号:
519196594 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Major Research Instrumentation
Plasma-enhanced chemical vapor deposition tool
等离子体增强化学气相沉积工具
- 批准号:
520256500 - 财政年份:2023
- 资助金额:
$ 17.81万 - 项目类别:
Major Research Instrumentation














{{item.name}}会员




