SWNT Amplification: A Route to Specific Structure Nanomanufacturing

SWNT 扩增:特定结构纳米制造的途径

基本信息

  • 批准号:
    0653505
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-01 至 2008-04-30
  • 项目状态:
    已结题

项目摘要

The objective of this study is to determine the feasibility of transforming the synthesis of single walled carbon nanotubes (SWNTs) from a process resulting in a mixture of tubes with different electronic properties (due to a range of diameter/chirality), to a scaleable, high yield, and efficient manufacturing process that allows for the formation of SWNTs of a particular diameter and hence electronic property. Such a process must allow for a high rate of production, be robust to system changes, and reliable. The most promising route to accomplish this goal is the process of SWNT amplification. In an analogous process to polymerase chain reaction (PCR) amplification of DNA, a single SWNT is attached to catalyst precursor forming a SWNT-cat. The catalyst precursor is reduced to form a metal nanoparticle creating intimate contact between the tube and particle. A growth gas is then introduced to begin growth of the SWNT. The resulting SWNT can be cut and the cycle repeated until the quantity of the desired SWNT is reached. The single (or small sample of) SWNT with a particular chirality would be grown into a large volume. In spite of the successful demonstration of SWNT-cat synthesis and growth there are several issues that must be addressed before large-scale SWNT amplification can succeed: (a) the percentage of SWNTs that are converted to SWNT-cat is low (50%), (b) the percentage of SWNT-cat that grows is low, (c) the average increase in length of the SWNT from SWNT-cat is low (300 nm), (d) the separation of individual seed SWNTs is limited to enrichment, and (e) the recycling and amplification of the grown SWNTs has not been demonstrated. Our initial results have demonstrated that the principle of SWNT amplification is possible, but in order to ascertain the viability of the process two of the key steps in this process must show potential for improvement: (a) chemical approaches to SWNT activation to allow binding of a catalyst particle, and (b) understanding of the requirements for activity of a pre-formed catalyst particle. The most important technical challenge facing the world in the 21st century is providing sustainable and universally available energy. In addition to conservation and evolutionary improvements in existing technologies, a solution to the global energy problem will require revolutionary new technology. With a projected increase in the global population from 6.5 billion in 2004 to over 10 billion in 2050 there will be a need for 30-60 tera watts of energy per year. The key technical component of a highly efficient power grid is power cables (quantum conductors) with which to rewire the electrical transmission grid and enable continental, and even worldwide, electrical energy transport. One material that offers a potential technical solution for low loss power cables is the armchair SWNT. If SWNT amplification can be moved from a demonstration of individual steps to a complete process then the ability to manufacture quantum wire conductors can be a reality. Through this project the graduate students will gain a cross-disciplinary education in nanotechnology. Each will be encouraged to participate at one national or international meeting. Through the Baker Institute for Public Policy at Rice the PI is actively involved in energy programs and energy policy. This interaction will allow students to become involved across a broad intellectual program with members of government, industry and academia. Rice University has significant expertise in the sidewall functionalization of SWNTs and the Barron Research Group has an active interaction with the groups of the Carbon Nanotube Laboratory.
本研究的目的是确定将单壁碳纳米管(SWNTs)的合成从导致具有不同电子特性(由于直径/手性范围)的管的混合物的过程转变为可缩放的、高产率和高效的制造过程的可行性,该制造过程允许形成特定直径的SWNTs,因此具有电子特性。这种工艺必须允许高生产率,对系统变化具有鲁棒性,并且可靠。实现这一目标的最有希望的途径是SWNT扩增过程。在与DNA的聚合酶链式反应(PCR)扩增类似的过程中,单个SWNT连接到催化剂前体上形成SWNT-cat。催化剂前体被还原以形成金属纳米颗粒,从而在管和颗粒之间产生紧密接触。然后引入生长气体以开始SWNT的生长。可以切割所得的SWNT,并重复该循环,直到达到所需的SWNT的量。具有特定手性的单个(或小样品)单壁碳纳米管将生长成大体积。尽管SWNT-cat合成和生长的成功证明,但在大规模SWNT扩增成功之前必须解决几个问题:(a)转化为SWNT-cat的SWNT的百分比低(50%),(B)生长的SWNT-cat的百分比低,(c)SWNT从SWNT-cat的长度的平均增加低(300 nm),(d)单个种子SWNT的分离仅限于富集,和(e)生长的SWNT的再循环和扩增尚未得到证实。我们的初步结果表明,单壁碳纳米管放大的原理是可能的,但为了确定该方法的可行性,该方法中的两个关键步骤必须显示出改进的潜力:(a)单壁碳纳米管活化的化学方法,以允许催化剂颗粒的结合,和(B)对预形成的催化剂颗粒的活性的要求的理解。世纪世界面临的最重要的技术挑战是提供可持续和普遍可用的能源。除了对现有技术进行保护和逐步改进之外,解决全球能源问题还需要革命性的新技术。随着全球人口预计从2004年的65亿增加到2050年的100亿以上,每年将需要30-60太瓦的能源。高效电网的关键技术组成部分是电力电缆(量子导体),用于重新布线输电网,并实现大陆甚至全球的电能传输。一种为低损耗电力电缆提供潜在技术解决方案的材料是扶手椅SWNT。如果单壁碳纳米管放大可以从单个步骤的演示转移到一个完整的过程,那么制造量子线导体的能力就可以成为现实。通过这个项目,研究生将获得纳米技术的跨学科教育。将鼓励每个人参加一次国家或国际会议。通过赖斯的贝克公共政策研究所,PI积极参与能源计划和能源政策。这种互动将使学生能够与政府,工业界和学术界的成员一起参与广泛的智力计划。莱斯大学在单壁纳米管侧壁功能化方面拥有丰富的专业知识,巴伦研究小组与碳纳米管实验室的小组有着积极的互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Barron其他文献

Risk bounds for model selection via penalization
  • DOI:
    10.1007/s004400050210
  • 发表时间:
    1999-02-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Andrew Barron;Lucien Birgé;Pascal Massart
  • 通讯作者:
    Pascal Massart
Considerations for establishment of a private virtual hospital identified using an implementation science approach
  • DOI:
    10.1038/s41598-025-85965-5
  • 发表时间:
    2025-01-29
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Olivia J. Fisher;Caroline Grogan;Andrew Barron;Shanthi Kanagarajah;Sue-Ellen Smith;Ian Smith;Kelly McGrath
  • 通讯作者:
    Kelly McGrath
Spatial learning differences between normal and precocious honeybee foragers (Apis Mellifera)
正常和早熟蜜蜂采集者(Apis Mellifera)之间的空间学习差异
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomokazu Ushitani;Clint Perry;Andrew Barron;and Ken Cheng
  • 通讯作者:
    and Ken Cheng
CHARACTERIZING ORTHOSTATIC INTOLERANCE SYNDROMES IN HEMATOPOIETIC STEM CELL TRANSPLANT RECIPIENTS
  • DOI:
    10.1016/s0735-1097(24)04498-x
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Josh West;Emily Federmann;Andrew Barron;Benjamin W. Van Tassell;Michele Golino;Emily Kontos;Antonio Abbate;Georgia K. Thomas
  • 通讯作者:
    Georgia K. Thomas

Andrew Barron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Barron', 18)}}的其他基金

Discovery Projects - Grant ID: DP210100740
发现项目 - 拨款 ID:DP210100740
  • 批准号:
    ARC : DP210100740
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Projects
Novel C-Bond coating to enable light weighting of glass products
新型 C-Bond 涂层可实现玻璃产品的轻量化
  • 批准号:
    EP/P030122/1
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Indirect Activation and Deactivation of Lewis Acids
路易斯酸的间接活化和失活
  • 批准号:
    0243575
  • 财政年份:
    2003
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing grant
Environmentally-Conscious Manufacturing: Environmentally-Benign Chemical Synthesis and Processing of Alumina-Based Ceramics
环保制造:氧化铝基陶瓷的环保化学合成和加工
  • 批准号:
    9613068
  • 财政年份:
    1996
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
U.S.-U.K. Cooperative Research: Gas Phase Structure of MOCVD Precurser to Group 13 Materials
美英合作研究:第 13 族材料的 MOCVD 前体的气相结构
  • 批准号:
    9622206
  • 财政年份:
    1996
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Group 13 Chalcogenides: Molecules and Materials
第 13 族硫属化物:分子和材料
  • 批准号:
    9634806
  • 财政年份:
    1996
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximation, Estimation, and Computation Properties of Neural Networks and Related Parsimonious Models
数学科学:神经网络和相关简约模型的近似、估计和计算特性
  • 批准号:
    9505168
  • 财政年份:
    1995
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Polynomial-Time Algorithms for Accurate Approximation and Estimation of Functions by Neural Nets
用于神经网络函数精确逼近和估计的多项式时间算法
  • 批准号:
    9410760
  • 财政年份:
    1994
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Gallium and Indium Chalcogenides: Molecules, New Phases andApplications
镓和铟硫族化物:分子、新相和应用
  • 批准号:
    9222498
  • 财政年份:
    1993
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Long & Medium Term Research: Activation and Functionaliza- tion of Chlorocarbons
长的
  • 批准号:
    9007698
  • 财政年份:
    1990
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
  • 批准号:
    2309886
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Magneto-Optical Organic Semiconductors with Spin Amplification (MOOS)
具有自旋放大功能的磁光有机半导体(MOOS)
  • 批准号:
    EP/Y002555/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
  • 批准号:
    2243665
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Hurricane Risk Amplification and Changing North Atlantic Natural Disasters
合作研究:NSFGEO-NERC:飓风风险放大和改变北大西洋自然灾害
  • 批准号:
    2244918
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Simplified Evaluation for Nonlinear Amplification Characteristics of Surface Layer Using Engineering Geomorphologic Classification
利用工程地貌分类简化地表层非线性放大特性评价
  • 批准号:
    23K04003
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular basis of auditory signal amplification
听觉信号放大的分子基础
  • 批准号:
    22KJ0609
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultrasensitive, Rapid, Amplification-Free RNA Virus Detection Using Nanodimer-Based Nucleic Acid Target Sequence Recognition
使用基于纳米二聚体的核酸靶序列识别进行超灵敏、快速、无扩增的 RNA 病毒检测
  • 批准号:
    2232940
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
  • 批准号:
    2243667
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Topological concepts for robust directed amplification
稳健定向扩增的拓扑概念
  • 批准号:
    2895098
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Studentship
Study on traveling wave amplification in semiconductors
半导体行波放大研究
  • 批准号:
    23K17322
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了