IGERT: Integrating Computational Science into Research in Biological Networks
IGERT:将计算科学融入生物网络研究
基本信息
- 批准号:0654108
- 负责人:
- 金额:$ 189.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Integrative Graduate Education and Research Traineeship (IGERT) program in Bioinformatics at Boston University is a highly successful interdisciplinary training program that has served as a model for other universities. With this renewal award, it will shift research emphasis to focus on biological networks. Research in molecular biology is shifting fundamentally towards the study of complex, multi-component networks that underlie the living cell. These networks are modeled in terms of their component interactions, regulatory properties, sub-networks or pathways, and system dynamics. Important examples include 1) biochemical pathways of metabolism, 2) protein-DNA interactions that regulate gene transcription, and 3) signaling pathways for cellular response to hormones and other molecules. Training will continue to stress computational and mathematical sciences, biology, and biochemistry and will incorporate innovation in an initial year-long research experience to include intensive wet-lab training in high-throughput data generation techniques, a team oriented "grand challenge" bioinformatics research project, and laboratory validation of computational predictions. An international perspective will be fostered through student fellowships for extended visits with collaborating faculty at partner institutions in Germany, Japan, and Israel. To disseminate successful training methodologies, the Program will sponsor a National Bioinformatics Education Workshop. It will provide undergraduate research opportunities in faculty labs through partnership with Boston University programs targeted to underrepresented groups and it will develop high school outreach activities, curricula and workshops, combining mathematics and biology. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
波士顿大学生物信息学综合研究生教育与研究培训计划(IGERT)是一项非常成功的跨学科培训计划,已成为其他大学的典范。有了这个更新的奖项,它将把研究重点转移到生物网络上。分子生物学的研究正在从根本上转向研究构成活细胞的复杂的、多组分的网络。这些网络根据其组件交互、监管属性、子网络或路径以及系统动态进行建模。重要的例子包括1)代谢的生化途径,2)调节基因转录的蛋白质-DNA相互作用,以及3)细胞对激素和其他分子的反应的信号通路。培训将继续强调计算和数学科学、生物和生物化学,并将在为期一年的初始研究经验中纳入创新,包括高通量数据生成技术的强化湿实验室培训,面向团队的“重大挑战”生物信息学研究项目,以及计算预测的实验室验证。通过与德国、日本和以色列的合作机构的合作教师进行长期访问的学生奖学金,将培养国际视角。为了传播成功的培训方法,该计划将主办一个全国生物信息学教育研讨会。它将通过与波士顿大学针对代表性不足的群体的项目合作,在教师实验室提供本科生研究机会,并将开发高中推广活动、课程和研讨会,将数学和生物结合起来。IGERT是一个NSF范围内的项目,旨在应对培养具有跨学科背景、所选学科的深厚知识以及满足未来职业需求所需的技术、专业和个人技能的美国博士科学家和工程师的挑战。该项目旨在通过建立创新的研究生教育和培训新模式,在超越传统学科界限的合作研究的肥沃环境中,催化研究生教育的文化变革。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Benson其他文献
Evaluating distance functions for clustering tandem repeats.
评估聚类串联重复的距离函数。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Suyog Rao;Alfredo Rodriguez;Gary Benson - 通讯作者:
Gary Benson
An Alphabet Independent Approach to Two-Dimensional Pattern Matching
一种与字母无关的二维模式匹配方法
- DOI:
10.1137/s0097539792226321 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
A. Amir;Gary Benson;Martín Farach - 通讯作者:
Martín Farach
Exact Distribution of a Spaced Seed Statistic for DNA Homology Detection
用于 DNA 同源性检测的间隔种子统计量的精确分布
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Gary Benson;Denise Y. F. Mak - 通讯作者:
Denise Y. F. Mak
Minimal entropy probability paths between genome families
基因组家族之间的最小熵概率路径
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:1.9
- 作者:
C. Ahlbrandt;Gary Benson;W. Casey - 通讯作者:
W. Casey
3'-UTR SIRF: A database for identifying clusters of short interspersed repeats in 3' untranslated regions
- DOI:
10.1186/1471-2105-8-274 - 发表时间:
2007-07-30 - 期刊:
- 影响因子:3.300
- 作者:
Benjamin B Andken;In Lim;Gary Benson;John J Vincent;Matthew T Ferenc;Bianca Heinrich;Larissa A Jarzylo;Heng-Ye Man;James O Deshler - 通讯作者:
James O Deshler
Gary Benson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Benson', 18)}}的其他基金
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 189.99万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
III: Small: Bit-Parallel Algorithms for Sequence Alignment and Applications in Detecting Human Genetic Variation and Bacterial Strain Typing
III:小:序列比对的位并行算法及其在检测人类遗传变异和细菌菌株分型中的应用
- 批准号:
1423022 - 财政年份:2014
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
III:Small:Algorithms for Tandem Repeat Variant Discovery Using Next Generation Sequencing Data
III:Small:使用下一代测序数据发现串联重复变异的算法
- 批准号:
1017621 - 财政年份:2010
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
SEI(BIO): DNA Inverted Repeats: Sensitive Detection Methods and Research Database
SEI(BIO):DNA 反向重复:灵敏检测方法和研究数据库
- 批准号:
0612153 - 财政年份:2006
- 资助金额:
$ 189.99万 - 项目类别:
Standard Grant
Composition Patterns in Nucleotide Sequences
核苷酸序列的组成模式
- 批准号:
0413463 - 财政年份:2003
- 资助金额:
$ 189.99万 - 项目类别:
Standard Grant
TRDB: A Multi-genome Database of Tandem Repeats
TRDB:串联重复的多基因组数据库
- 批准号:
0413462 - 财政年份:2003
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
TRDB: A Multi-genome Database of Tandem Repeats
TRDB:串联重复的多基因组数据库
- 批准号:
0090789 - 财政年份:2001
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
Composition Patterns in Nucleotide Sequences
核苷酸序列的组成模式
- 批准号:
0073081 - 财政年份:2000
- 资助金额:
$ 189.99万 - 项目类别:
Standard Grant
CAREER: Tandem Repeats: Sequence Comparison and Search Algorithms
职业:串联重复:序列比较和搜索算法
- 批准号:
9623532 - 财政年份:1996
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
相似海外基金
NSFDEB-NERC: Integrating computational, phenotypic, and population-genomic approaches to reveal processes of cryptic speciation and gene flow in Madag
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达格神秘物种形成和基因流的过程
- 批准号:
NE/X002071/1 - 财政年份:2023
- 资助金额:
$ 189.99万 - 项目类别:
Research Grant
Integrating Computational and Experimental Models to Predict Toxicity of the Pancreas
整合计算和实验模型来预测胰腺的毒性
- 批准号:
10576042 - 财政年份:2023
- 资助金额:
$ 189.99万 - 项目类别:
Development of an advanced search system for documents in archives by integrating computational representations of information useful for searching documents
通过集成可用于搜索文档的信息的计算表示,开发档案中文档的高级搜索系统
- 批准号:
23KK0005 - 财政年份:2023
- 资助金额:
$ 189.99万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Deepening Computational Thinking for English Learners by Integrating Community-Based Environmental Literacy
通过整合社区环境素养加深英语学习者的计算思维
- 批准号:
2317832 - 财政年份:2023
- 资助金额:
$ 189.99万 - 项目类别:
Continuing Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
- 批准号:
10840682 - 财政年份:2023
- 资助金额:
$ 189.99万 - 项目类别:
Integrating brain, neurocognitive, and computational tools in Opioid Use Disorder (OUD) to characterize executive function and to predict clinical outcomes
整合阿片类药物使用障碍 (OUD) 中的大脑、神经认知和计算工具来表征执行功能并预测临床结果
- 批准号:
10506495 - 财政年份:2023
- 资助金额:
$ 189.99万 - 项目类别:
Integrating computational chemistry models of ion channels to build a holistic cardiac safety prediction tool for drug discovery
整合离子通道的计算化学模型,构建用于药物发现的整体心脏安全预测工具
- 批准号:
2779681 - 财政年份:2022
- 资助金额:
$ 189.99万 - 项目类别:
Studentship
PFI (MCA): Integrating Computational Chemistry with Machine Learning to Engineer Carbonaceous Adsorbents for Volatile Organics
PFI (MCA):将计算化学与机器学习相结合,设计用于挥发性有机物的碳质吸附剂
- 批准号:
2121160 - 财政年份:2022
- 资助金额:
$ 189.99万 - 项目类别:
Standard Grant
IRES Track I: Computational Co-Design of Physical Systems with Embodied Intelligence by Integrating Data, Simulation, and User Interface
IRES Track I:通过集成数据、仿真和用户界面,实现具有体现智能的物理系统的计算协同设计
- 批准号:
2153560 - 财政年份:2022
- 资助金额:
$ 189.99万 - 项目类别:
Standard Grant
Integrating innovative computational and organic synthesis for efficient asymmetric catalyst discovery
整合创新计算和有机合成以实现高效的不对称催化剂发现
- 批准号:
RGPIN-2022-03383 - 财政年份:2022
- 资助金额:
$ 189.99万 - 项目类别:
Discovery Grants Program - Individual