Partial Differential Equation Models for Large Networks
大型网络的偏微分方程模型
基本信息
- 批准号:0700559
- 负责人:
- 金额:$ 27.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves continuum models of large networks using partial differential equations (PDEs). The premise is that some global characteristics of very large networks can be captured by continuum models that consider the behavior of the components on the scale of the aggregate rather than of the individual. The project involves an interdisciplinary team of an electrical engineer with notable expertise in networks, a statistician experienced in asymptotic analysis of stochastic processes and statistical modeling, and an applied mathematician with expertise in modeling and numerical simulation involving nonlinear PDEs. Successful completion of this project will result in the ability to analyze the performance of large networks with a computational effort that is not possible using conventional Monte Carlo simulation.Intellectual Merit: This project contains significant intellectual merit for engineering as well as mathematics. From the mathematical point of view, both creating mathematical descriptions of the continuum behavior of large networks and analyzing the resulting differential equations pose real challenges. From the engineering point of view, continuum modeling will require a detailed understanding of network behavior on the smallest scale of a few nodes and identification of global characteristics that can be modeled.Broader Impacts:This project will also have both an immediate positive impact on the current students of the principal investigators and on training future students. The students working on problems originating in the modeling of networks will have an invaluable practical component to their theses. This will significantly widen their career opportunities in industry and interdisciplinary settings. This in turn will provide a powerful recruiting tool for Colorado State University in the future.
该项目涉及使用偏微分方程(PDE)的大型网络的连续模型。其前提是,大型网络的某些全局特征可以通过连续体模型来捕捉,该模型考虑的是集合规模而不是个体规模上的组件行为。 该项目涉及一个跨学科的团队,其中包括一名在网络方面具有显着专业知识的电气工程师,一名在随机过程和统计建模的渐近分析方面经验丰富的统计学家,以及一名在涉及非线性偏微分方程的建模和数值模拟方面具有专业知识的应用数学家。 该项目的成功完成将使您能够分析大型网络的性能,而传统的Monte Carlo模拟无法实现这一点。智力优势:该项目在工程和数学方面都具有重要的智力优势。 从数学的角度来看,创建大型网络连续行为的数学描述和分析由此产生的微分方程都构成了真实的挑战。从工程学的角度来看,连续体建模需要在最小的几个节点上详细了解网络行为,并识别可以建模的全局特征。更广泛的影响:该项目也将对主要研究者的当前学生和未来学生的培训产生直接的积极影响。研究网络建模问题的学生将对他们的论文有非常宝贵的实用价值。这将大大拓宽他们在行业和跨学科环境中的职业机会。这反过来又将为科罗拉多州立大学在未来提供一个强大的招聘工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Chong其他文献
Editorial for the SI: Optimization of Discrete Event Dynamic Systems
- DOI:
10.1007/s10626-009-0073-8 - 发表时间:
2009-06-10 - 期刊:
- 影响因子:1.600
- 作者:
Yorai Wardi;Edwin Chong - 通讯作者:
Edwin Chong
Jitter Control and Dynamic Resource Management for Multimedia Communication Over Broadband Network
宽带网络多媒体通信的抖动控制和动态资源管理
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
A. Bashandy;Edwin Chong;A. Ghafoor;A. Bashandy;Edwin Chong;Ghafoor - 通讯作者:
Ghafoor
Edwin Chong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Chong', 18)}}的其他基金
Student Travel Support for the 2011 IEEE Conference on Decision and Control. To be Held in Orlando Florida, December 12-15, 2011
2011 年 IEEE 决策与控制会议的学生旅行支持。
- 批准号:
1120940 - 财政年份:2011
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
Collaborative Research: Opportunistic Scheduling for Multimedia Wireless Systems
协作研究:多媒体无线系统的机会调度
- 批准号:
0207892 - 财政年份:2002
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
CAREER: Decision, Control and Optimization in Discrete Event Systems
职业:离散事件系统中的决策、控制和优化
- 批准号:
9501652 - 财政年份:1995
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
RESEARCH INITIATION AWARD: Parametric and Nonparametric Control in Discrete Event Systems
研究启动奖:离散事件系统中的参数和非参数控制
- 批准号:
9410313 - 财政年份:1994
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 27.68万 - 项目类别:
ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
- 批准号:
2309551 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2042384 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
- 批准号:
2106650 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2203014 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
- 批准号:
21H00993 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
- 批准号:
2110263 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant