CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
基本信息
- 批准号:2042384
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims at carrying out mathematical studies of some dynamics in heterogeneous environments, such as crystal deposition, spreading of pollutants in inhomogeneous flows, and sound propagation in the ocean. Partial differential equations (PDEs) serve as the principal mathematical tool to model such phenomena, and to account for lack of information or model uncertainty it is natural to add randomness to the equations. A ubiquitous feature of such problems is a wide range of temporal and spatial scales, extending all the way up to the scale of observational interest. As numerical simulations are practically impossible on the microscopic scale, a simplified and effective description of the physical quantities, such as the surface height, the density of pollutants, and the wave intensity, is extremely desirable for these problems. The goal of the project is to study the relevant random PDEs, and to lay down mathematical foundations for simplified effective models in various approximation regimes. Organic part of this project is the educational program that is integrated with research. The educational program includes a sustained training of graduate and undergraduate students at the intersection of probability theory, analysis, and applications, through designing advanced courses, supervising undergraduate research, and organizing workshops for early career researchers. The goal is to introduce students to the analytic and probabilistic tools that are indispensable for both academic research and engineering applications. The focus of this project is in the areas of stochastic PDEs, diffusion in random environment, and wave propagation in random media. By combining tools, such as asymptotic expansions, functional inequalities and stochastic analysis, the principal investigator will study (i) nonlinear stochastic PDEs modeling interface growth; (ii) behavior of directed polymers in random environment; (iii) effective models of wave propagation in random media. One of principal themes of the project is to analyze the dependence of observables on the random perturbations, and to understand the interplay between the nonlinearity and the randomness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究的目的是对非均匀环境中的一些动力学进行数学研究,如晶体沉积、污染物在非均匀流中的扩散和海洋中的声音传播。偏微分方程组(PDE)是模拟这类现象的主要数学工具,为了解释信息的缺乏或模型的不确定性,很自然地在方程中加入随机性。这类问题的一个普遍特征是时间和空间尺度的广泛,一直延伸到观测兴趣的尺度。由于数值模拟在微观尺度上几乎是不可能的,因此对于这些问题,简化和有效地描述物理量,如表面高度、污染物密度和波强是非常必要的。该项目的目标是研究相关的随机偏微分方程组,并为简化的有效模型在不同的近似条件下奠定数学基础。该项目的有机组成部分是与研究相结合的教育项目。该教育计划包括通过设计高级课程、指导本科生研究和为早期职业研究人员组织研讨会,在概率论、分析和应用的交叉点对研究生和本科生进行持续培训。目标是向学生介绍分析和概率工具,这些工具对于学术研究和工程应用都是不可或缺的。本课题主要研究随机偏微分方程组、随机环境中的扩散、随机介质中的波传播等方面的问题。通过结合渐近展开、泛函不等式和随机分析等工具,主要研究人员将研究(I)非线性随机偏微分方程组模拟界面生长;(Ii)定向聚合物在随机环境中的行为;(Iii)随机介质中波传播的有效模型。该项目的主要主题之一是分析观测数据对随机扰动的依赖性,并了解非线性和随机性之间的相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High Temperature Behaviors of the Directed Polymer on a Cylinder
- DOI:10.1007/s10955-022-02899-2
- 发表时间:2022-02
- 期刊:
- 影响因子:1.6
- 作者:Yu Gu;T. Komorowski
- 通讯作者:Yu Gu;T. Komorowski
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Gu其他文献
Collecting and analyzing key-value data under shuffled differential privacy
洗牌差异隐私下键值数据的收集和分析
- DOI:
10.1007/s11704-022-1572-0 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.2
- 作者:
Ning Wang;Wei Zheng;Zhigang Wang;Zhiqiang Wei;Yu Gu;Peng Tang;Ge Yu - 通讯作者:
Ge Yu
Numerical approach of liquid carbon dioxide injection in crushed coal and its experimental validation
碎煤中液态二氧化碳注入的数值方法及其实验验证
- DOI:
10.1002/er.5899 - 发表时间:
2020-09 - 期刊:
- 影响因子:4.6
- 作者:
Zhijin Yu;Song Yang;Yu Gu;Jun Deng - 通讯作者:
Jun Deng
Nanocatalytic Hydrogel with Rapid Photodisinfection and Robust Adhesion for Fortified Cutaneous Regeneration
具有快速光消毒和强大粘附力的纳米催化水凝胶,可增强皮肤再生
- DOI:
10.1021/acsami.2c17366 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yimeng Su;Xiumei Zhang;Yan Wei;Yu Gu;Huilun Xu;Ziming Liao;Liqin Zhao;Jingjing Du;Yinchun Hu;Xiaojie Lian;Weiyi Chen;Yi Deng;Di Huang - 通讯作者:
Di Huang
DELR: A double-level ensemble learning method for unsupervised anomaly detection. Knowledge-Based Systems
DELR:一种用于无监督异常检测的双层集成学习方法。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:8.8
- 作者:
Jia Zhang;Zhiyong Li;Ke Nai;Yu Gu;Ahmed Sallam - 通讯作者:
Ahmed Sallam
In-situ synthesis of a unique 0D/2D porous carbon integrated architecture for high-performance flexible micro-supercapacitors
原位合成独特的0D/2D多孔碳集成架构,用于高性能柔性微型超级电容器
- DOI:
10.1016/j.jpowsour.2022.231687 - 发表时间:
2022-09 - 期刊:
- 影响因子:9.2
- 作者:
Wenyu Wu;Huaxin Ma;Zhao Zhang;Zhi Zhang;Yu Gu;Weinan Gao;Wei Zhou;Ruijun Zhang - 通讯作者:
Ruijun Zhang
Yu Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Gu', 18)}}的其他基金
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132937 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
2152741 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Intergovernmental Personnel Award
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2203014 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
- 批准号:
2203007 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
REU Site: Undergraduate Robotics Research in Human-Swarm Interaction
REU 网站:人-群交互中的本科生机器人学研究
- 批准号:
1851815 - 财政年份:2019
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
- 批准号:
1907928 - 财政年份:2019
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Impact of Anthropogenic Air Pollution on Ice Clouds and Regional Radiative Forcing
人为空气污染对冰云和区域辐射强迫的影响
- 批准号:
1701526 - 财政年份:2017
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
- 批准号:
1807748 - 财政年份:2017
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Radiative Transfer through the Black Carbon-Snow System: Fundamentals and Applications
通过黑碳雪系统的辐射传输:基础知识和应用
- 批准号:
1660587 - 财政年份:2017
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
- 批准号:
1613301 - 财政年份:2016
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
- 批准号:
2238127 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
- 批准号:
2238219 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations
职业:测度正则性理论和色散偏微分方程
- 批准号:
2142064 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Randomized Multiscale Methods for Heterogeneous Nonlinear Partial Differential Equations
职业:异质非线性偏微分方程的随机多尺度方法
- 批准号:
2145364 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
- 批准号:
2142575 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Integro-differential and Transport Problems in Partial Differential Equations
职业:偏微分方程中的积分微分和输运问题
- 批准号:
2144232 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: Constrained Optimal Control of Partial Differential Equations for Improving Energy Utilization in Transportation and in the Built Environment
职业:偏微分方程的约束最优控制,以提高交通和建筑环境中的能源利用率
- 批准号:
2042354 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant