Automorphic Forms, and their links to Arithmetic and Geometry
自守形式及其与算术和几何的联系
基本信息
- 批准号:0701089
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will investigate the impact of automorphic forms on geometry and number theory. The first part of the project, joint with K. Paranjape, will associate Calabai-Yau manifolds over the rationals of dimension m to certain basic holomorphic cusp forms of weight m+1 with rational coefficients. The goal of the second part, joint with J. Cogdell, is to refine the omnipotent converse theorem for GL(n) so as to require less on the associated L-functions, thereby increasing the potential applicability in more interesting situations. The third part, joint with N. Dunfield, will use CM automorphic forms to construct an explicit tower of compact hyperbolic 3-manifolds M(n) of arithmetic type such that the numbered of fibred faces in the Thurston unit ball goes to infinity, in fact exponentially, as n becomes large. The fourth project, joint with D. Prasad, will use global methods to settle a conjecture on when self dual irreducible representations of the multiplicative group of a division algebra D over a local field leave invariant a symmetric, or alternating, bilinear form, and this will have potential applications to the root number.The main thrust of the project is to comprehend some of the manifestations of symmetry in Mathematics and beyond. One could say that everything interesting in the natural world has some aspect of symmetry, though not always visibly so. Often mathematicians and physicists build generating functions outof discrete collections of numbers arising from observations or calculations, and it is a pressing problem to know if these functions admit hidden symmetries, like the invariance under inversion of a hidden variable. When such symmetries arise, they are often describing the tones of automorphic functions, which are continuous, pulchritudinous entities such as the waveforms on a disk. Their discrete tones are linked, experimentally and theoretically, to exciting quantities such as lengths of geodesics, primes, and congruence solutions of polynomial equations. Exploiting them is a worthy endeavor, and there are many gold mines yet to be discovered.
这个项目将研究自同构形式对几何和数论的影响。该项目的第一部分是与K. Paranjape合作,将维度m的有理数上的Calabai-Yau流形与权值m+1的具有有理数系数的某些基本全纯顶点形式联系起来。第二部分的目标是与J. Cogdell共同完善GL(n)的全能逆定理,从而减少对相关l函数的要求,从而增加在更有趣的情况下的潜在适用性。第三部分,与n . Dunfield联合,将使用CM自同构形式构造一个算术型的紧双曲3-流形M(n)的显式塔,使得Thurston单位球中的纤维面数量趋于无穷大,实际上是指数地,当n变大时。第四个项目,与D. Prasad合作,将使用全局方法来解决一个猜想,即在局部域上除法代数D的乘法群的自对偶不可约表示何时保持对称或交替双线性形式不变,这将有潜在的应用于根数。该项目的主要目的是理解对称性在数学及其他领域的一些表现形式。人们可以说,自然界中所有有趣的事物都有某种对称性,尽管并不总是明显如此。数学家和物理学家经常从观察或计算中产生的离散数字集合中构建生成函数,并且知道这些函数是否承认隐藏的对称性是一个紧迫的问题,例如隐变量的反转下的不变性。当这种对称性出现时,它们通常描述自同构函数的音调,这些自同构函数是连续的、有脉动的实体,如磁盘上的波形。它们的离散音调在实验和理论上都与令人兴奋的量有关,如测地线的长度、素数和多项式方程的同余解。开采它们是一项值得的努力,还有许多金矿尚未被发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinakar Ramakrishnan其他文献
Recovering Cusp Forms on GL(2) from Symmetric Cubes
从对称立方体恢复 GL(2) 上的尖点形式
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dinakar Ramakrishnan - 通讯作者:
Dinakar Ramakrishnan
Diophantine Equations An Introduction
丢番图方程简介
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dinakar Ramakrishnan;M. Mirzakhani - 通讯作者:
M. Mirzakhani
Local Galois Symbols on E x E
E x E 上的局部伽罗瓦符号
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
J. Murre;Dinakar Ramakrishnan - 通讯作者:
Dinakar Ramakrishnan
Compact arithmetic quotients of the complex 2-ball and a conjecture of Lang
复数2球的紧算术商和Lang猜想
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mladen Dimitrov;Dinakar Ramakrishnan - 通讯作者:
Dinakar Ramakrishnan
Irreducibility and Cuspidality
不可约性和尖峰性
- DOI:
10.1007/978-0-8176-4646-2_1 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Dinakar Ramakrishnan - 通讯作者:
Dinakar Ramakrishnan
Dinakar Ramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinakar Ramakrishnan', 18)}}的其他基金
Modular varieties, arithmetic and geometry
模数、算术和几何
- 批准号:
1001916 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Problems in Automorphic Forms, Arithmetic and Geometry
自守形式、算术和几何问题
- 批准号:
0402044 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Automorphic Forms, L-functions and Galois Representations
自守形式、L 函数和伽罗瓦表示
- 批准号:
0100372 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Asai L-Functions, Forms on GL(4), and Applications
Asai L 函数、GL(4) 形式和应用
- 批准号:
9801328 - 财政年份:1998
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multiplicity One Results for Automorphic Forms via L-functions
数学科学:通过 L 函数得出自同构形式的重数一结果
- 批准号:
9501151 - 财政年份:1995
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Sciences: Los Angeles Number Theory Group
数学科学:洛杉矶数论小组
- 批准号:
8922661 - 财政年份:1990
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Automorphic Forms of Galois Type, andthe L-functions of Some Simple Moduli Varieties
数学科学:伽罗瓦型的自守形式和一些简单模簇的 L 函数
- 批准号:
8905251 - 财政年份:1989
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Sciences: Higher Regulators, Algebraic Cycles, and Values of L-functions
数学科学:高级调节器、代数循环和 L 函数的值
- 批准号:
8703602 - 财政年份:1987
- 资助金额:
$ 21万 - 项目类别:
Continuing grant
Mathematical Sciences: Higher Regulators, Algebraic Cycles, and Values of L-Functions
数学科学:高级调节器、代数循环和 L 函数的值
- 批准号:
8514552 - 财政年份:1985
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Symbols and Values of L-Functions of Kuga Varieties
数学科学:Kuga 簇的 L 函数的符号和值
- 批准号:
8304482 - 财政年份:1983
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Golden Rules of Student Exchange Programs; Study on their origins and future forms
学生交换项目的黄金法则;
- 批准号:
23K02503 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Connections of (quasi)modular forms to multiple zeta values and their finite analogues
(准)模形式与多个 zeta 值及其有限类似物的连接
- 批准号:
23K03030 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
- 批准号:
23K03079 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Period map for primitive forms and their associated root systems and Lie algebras
本原形式的周期图及其相关的根系和李代数
- 批准号:
23H01068 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum Modular Forms and their Applications
量子模块化形式及其应用
- 批准号:
22H01117 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automorphic Forms on Reductive Groups and Their Covers
还原群上的自守形式及其覆盖
- 批准号:
2100206 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Functional elucidation of two forms of Galectin-9 and their potential application to diagnosis
两种形式 Galectin-9 的功能阐明及其在诊断中的潜在应用
- 批准号:
21K07068 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
L-functions of automorphic forms and their variants
自守形式的 L 函数及其变体
- 批准号:
2599753 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Studentship
CAREER: Chemical Trends of Elements Under Pressure and their Effects to Forms and Properties of Materials
职业:压力下元素的化学趋势及其对材料形态和性能的影响
- 批准号:
1848141 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Dirichlet series in several variables associated to automorphic forms and their applications to special values of automorphic L-functions
与自同构形式相关的几个变量的狄利克雷级数及其在自同构 L 函数特殊值中的应用
- 批准号:
19K03419 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)