Combinatorial Studies in Algebra, Geometry, and Topology

代数、几何和拓扑的组合研究

基本信息

  • 批准号:
    0701044
  • 负责人:
  • 金额:
    $ 16.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

This research plan is divided into three projects in algebraic combinatorics and its applications to other areas of mathematics. The first project is in combinatorial representation theory, and is mostly concerned with the development of the alcove path model; this is a simple combinatorial model (recently introduced by the investigator in collaboration with A. Postnikov) for the representation theory of complex semisimple Lie algebras and, more generally, of complex symmetrizable Kac-Moody algebras. One problem is to describe the way in which the alcove path model specializes to other models in this area, such as Kashiwara-Nakashima tableaux (in the classical types), and the Kyoto path model (in the affine Kac-Moody types). Other problems are related to the combinatorics of Kashiwara's crystals and an efficient construction of a monomial basis of an irreducible representation; the approach to these problems is based on the alcove path model. Unrelated to this model, the first part of the project also includes a combinatorial study of explicit constructions of irreducible representations based on lattices with a small number of covers. The second part of the project is concerned with modern Schubert calculus on generalized flag varieties. The main goal is to derive combinatorial multiplication formulas for Schubert classes (i.e., the natural basis elements) in the cohomology and K-theory of flag varieties. One such problem is a Chevalley-type multiplication formula (by a codimension 1 class) in the equivariant K-theory of flag varieties for Kac-Moody groups; this formula generalizes a similar formula in the finite case based on the alcove path model. More general such formulas will be investigated in cohomology, based on combinatorial structures such as certain monoids for the Bruhat order on the corresponding Weyl group. The third part of the project is concerned with combinatorial applications to algebraic topology. More precisely, it involves combinatorial formulas (based on trees) for the coefficients of certain formal group laws. There are applications to topological conjectures about classifying spaces of certain finite abelian groups.A unifying theme of the project outlined here is the emphasis on combinatorics and computation. During the last decades, computation has gained an important role in mathematical research. This stimulated the development of combinatorics, as it became clear that combinatorial structures are particularly well suited for encoding complex mathematical objects, while combinatorial methods are well suited for related computations. This research plan is part of the ongoing effort to perform concrete computations, based on combinatorial structures. Such structures are used to study representations (i.e., actions on vector spaces) of complex Lie algebras. They are also used to study the geometry of certain classical algebraic varieties, namely flag varieties; related applications exist, for instance, to enumerative geometry (such as counting the lines or planes satisfying a number of generic intersection conditions, which is equivalent to performing certain cohomology calculations). The representations of Lie algebras and the geometry of flag varieties are related to each other, and they play a fundamental role in several areas of mathematics and theoretical physics. They display remarkable combinatorial complexity, which is investigated in this project.
本研究计划分为代数组合及其在其他数学领域的应用三个项目。第一个项目是组合表示理论,主要关注凹形路径模型的发展;这是一个简单的组合模型(最近由研究者与a . Postnikov合作引入),用于复半单李代数的表示理论,更一般地说,用于复可对称的Kac-Moody代数。一个问题是如何描述凹形路径模型与该领域其他模型的区别,比如Kashiwara-Nakashima模型(经典类型)和京都路径模型(仿射Kac-Moody类型)。其他问题与Kashiwara晶体的组合学和不可约表示的单项基的有效构造有关;解决这些问题的方法是基于凹形路径模型。与此模型无关,该项目的第一部分还包括基于少量覆盖的格的不可约表示的显式结构的组合研究。项目的第二部分是关于广义旗变的现代舒伯特微积分。主要目的是推导出在旗子簇的上同调和k理论中Schubert类(即自然基元)的组合乘法公式。一个这样的问题是在Kac-Moody群的标志变异的等变k理论中的chevalley型乘法公式(通过一个余维数为1的类);该公式推广了有限情况下基于凹形路径模型的类似公式。更一般的这类公式将在上同调中研究,基于组合结构,如相应Weyl群上Bruhat阶的某些单群。项目的第三部分是关于代数拓扑的组合应用。更准确地说,它涉及到某些形式群律系数的组合公式(基于树)。关于有限阿贝尔群的分类空间的拓扑猜想有一些应用。这里概述的项目的一个统一主题是强调组合学和计算。在过去的几十年里,计算在数学研究中发挥了重要作用。这刺激了组合学的发展,因为很明显,组合结构特别适合编码复杂的数学对象,而组合方法非常适合相关的计算。该研究计划是基于组合结构进行具体计算的持续努力的一部分。这种结构用于研究复李代数的表示(即向量空间上的作用)。它们也被用来研究某些经典代数变种的几何,即旗变种;例如,存在枚举几何的相关应用程序(例如计算满足许多一般相交条件的线或面,这相当于执行某些上同调计算)。李代数的表示与旗变的几何是相互联系的,它们在数学和理论物理的许多领域都起着重要的作用。它们表现出显著的组合复杂性,这在本项目中进行了研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian Lenart其他文献

Towards a Combinatorial Model for $q$-weight Multiplicities of Simple Lie Algebras (Extended Abstract)
简单李代数 $q$ 权重重数的组合模型(扩展摘要)
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Lecouvey;Cristian Lenart;Adam Schultze
  • 通讯作者:
    Adam Schultze
DEMAZURE CRYSTALS , AND RELATED UNIFORM MODELS
DEMAZURE 水晶及相关制服模型
  • DOI:
    10.1090/conm/565/11181
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cristian Lenart;Travis Scrimshaw
  • 通讯作者:
    Travis Scrimshaw
A generalization of the alcove model and its applications
壁龛模型的推广及其应用
  • DOI:
    10.1007/s10801-014-0552-3
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Cristian Lenart;Arthur Lubovsky
  • 通讯作者:
    Arthur Lubovsky
ピカール数1の正規delPezzo曲面について
关于皮卡德数为 1 的法线 delPezzo 曲面
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cristian Lenart;Satoshi Naito;Daisuke Sagaki;Anne Schilling;Mark Shimozono;Todor Milanov;阿部紀行;小島秀雄
  • 通讯作者:
    小島秀雄
A uniform model for Kirillov―Reshetikhin crystals
基里洛夫—列谢蒂欣晶体的统一模型

Cristian Lenart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian Lenart', 18)}}的其他基金

Conference: Women in Algebra and Combinatorics. Northeast Conference Celebrating the Association for Women in Mathematics: 50 Years and Counting
会议:代数和组合学中的女性。
  • 批准号:
    2305413
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
New Applications of Combinatorics to Representation Theory and Schubert Calculus
组合数学在表示论和舒伯特微积分中的新应用
  • 批准号:
    1855592
  • 财政年份:
    2019
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
Representation Theory and Schubert Calculus: Combinatorics and Interactions
表示论和舒伯特微积分:组合学和相互作用
  • 批准号:
    1362627
  • 财政年份:
    2014
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
Combinatorics of Crystals, Macdonald Polynomials, and Schubert Calculus
晶体组合、麦克唐纳多项式和舒伯特微积分
  • 批准号:
    1101264
  • 财政年份:
    2011
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
Combinatorial Models in Algebra, Geometry, and Topology
代数、几何和拓扑中的组合模型
  • 批准号:
    0403029
  • 财政年份:
    2004
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant

相似海外基金

Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
  • 批准号:
    2200501
  • 财政年份:
    2022
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
  • 批准号:
    1902116
  • 财政年份:
    2019
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1836867
  • 财政年份:
    2018
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
Studies on geometry and algebra of knots and local moves
结和局部运动的几何和代数研究
  • 批准号:
    17K05265
  • 财政年份:
    2017
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1600198
  • 财政年份:
    2016
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
  • 批准号:
    1401384
  • 财政年份:
    2014
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
  • 批准号:
    1123059
  • 财政年份:
    2012
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
Studies in Commutative Algebra
交换代数研究
  • 批准号:
    1259142
  • 财政年份:
    2012
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Studies on the interaction between analysis and algebra through "Philosophy of Concepts": in the cases of noncommutative geometry and algebraic geometry
通过《概念哲学》研究分析与代数的相互作用:以非交换几何和代数几何为例
  • 批准号:
    23520033
  • 财政年份:
    2011
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了