New Challenges in Aggregation Kinetics

聚集动力学的新挑战

基本信息

  • 批准号:
    0703937
  • 负责人:
  • 金额:
    $ 11.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

Rosales0703937 Aggregation, the coalescence of monomers into large,structured clusters, is found at the heart of many phenomena inscience and industry. In a simplified model, cluster growth is adiscrete stochastic process of adding or shedding monomers, oneat a time. The Becker-Doring (BD) ordinary differentialequations govern the growth of small clusters by surfacereactions. Large clusters, growing by the diffusion of thesurrounding monomers, are described by the Lifshitz-Slyozovequations. Small clusters nucleate and form large ones by a slowprocess caused by fluctuations over a free-energy barrier. Theinvestigator, Joseph Farjoun, studies the following aspects ofnucleation: (a) The Zeldovich nucleation formula disagrees with theexperimental results. It is highly sensitive to thesuper-saturation's value, and hence on the distribution ofcluster-sizes. The investigator seeks a more accurate formula byresolving the super-saturation to higher order. In addition, asimulation based on renormalized Monte-Carlo methods is providingmore data on the nucleation rate. (b) The long-term distribution of clusters sizes, as determinedby the Zeldovich nucleation rate and LS growth rate, is aclassical problem. The investigator studies a connection to thesmooth similarity-solution: A deeper analysis of the partialanswer in his PhD thesis. (c) The analysis of 2-dimensional nucleation is a naturalextension of the work in the investigator's PhD thesis. Thelogarithmic behavior of monomer concentration about nuclei in2-dimensions forces the nucleation process to be spatiallynon-homogeneous. The investigator studies this by connecting toprevious work on 2-dimensional diffusion. (d) The investigator studies the dynamic dependency of theaggregation process on other physical parameters. Specifically,he analyzes aggregation in a system with a varying temperature. The nucleation rate and the total amount of clusters formed aredetermined by a balance between the decreasing temperature andthe depletion of monomers, which have competing effects on thesuper-saturation. Phenomena that are modeled by aggregation -- solidification,precipitation, and the condensation of vapor into droplets --appear in many biophysical and industrial contexts:Glass-to-crystal transformations, crystal nucleation inunder-cooled liquids, and in polymers, colloidal crystallization,growth of spherical aggregates beyond the critical micelleconcentration (CMC), and the segregation by coarsening of binaryalloys quenched into the miscibility gap, to name but a fewspecific examples. The field of micro-chip fabrication stands tobenefit greatly from a theory capable of predicting the short-and long-term behavior of 2-dimensional clusters. Resolving thelong-standing disagreement between the Zeldovich formula (whichpredicts the rate at which clusters are created) and theexperiments, finding the time-scales of the various phases of theaggregation process, and a theory for 2-dimensional aggregation(all of which are topics of research in this project) allows formore accurate predictions and better design. A more realisticmodel, which accounts for the varying temperature, can be used inthe design of vapor-forming industries (e.g. power plants), andin weather prediction. The current state of the art inaggregation is that of extremes: the behavior at very short andvery long times, the behavior of very small or very largeclusters have been studied extensively. In this project, thework of the investigator, Joseph Farjoun, bridges these gaps.
Rosales0703937聚集,即单体聚合成大的、有结构的簇,是科学和工业中许多现象的核心。在一个简化的模型中,团簇的生长是一次加入或脱落单体的随机过程。Becker-Dering(BD)常微分方程组通过表面反应控制小团簇的生长。用Lifshitz-Slyozov方程描述了由周围单体扩散生长的大团簇。小星团通过自由能势垒上的波动引起的缓慢过程而成核并形成大星团。研究人员Joseph Farjoun研究了成核的以下几个方面:(A)Zeldovich成核公式与实验结果不一致。它对过饱和度的大小非常敏感,因此对团簇大小的分布也很敏感。研究人员通过将过饱和度分解到更高的阶数来寻求更准确的公式。此外,基于重整化蒙特卡罗方法的模拟提供了更多关于形核率的数据。(B)由Zeldovich形核率和LS增长率决定的团簇尺寸的长期分布是一个典型的问题。这位研究人员研究了与平滑相似解的联系:对他的博士论文中的部分答案进行了更深入的分析。(C)二维成核分析是研究人员博士论文工作的自然延伸。单体浓度对二维核的对数行为迫使成核过程在空间上是不均匀的。研究者通过将二维扩散的前人工作联系起来来研究这一点。(D)研究了聚集过程对其他物理参数的动态依赖性。具体地说,他分析了温度变化的系统中的聚集。成核速率和形成的团簇总数由降低的温度和单体的耗尽之间的平衡决定,这两个因素对过饱和度具有竞争作用。由聚集模拟的现象--凝固、沉淀和水蒸气凝聚成液滴--出现在许多生物物理和工业环境中:玻璃到晶体的转变、过冷液体和聚合物中的晶体成核、胶体结晶、超过临界胶束浓度(CMC)的球形聚集体的生长,以及通过粗化淬火进入混溶间隙的二元合金的偏析,仅举几个具体的例子。微芯片制造领域将从能够预测二维团簇的短期和长期行为的理论中受益匪浅。解决Zeldovich公式(它预测星团形成的速度)和实验之间长期存在的分歧,找到聚集过程各个阶段的时间尺度,以及二维聚集理论(所有这些都是本项目的研究主题),可以得到更准确的预测和更好的设计。一个更现实的模型,它解释了温度的变化,可以用于蒸汽形成行业(如发电厂)的设计,以及天气预报。目前最先进的聚集状态是极端情况:在很短和很长时间内的行为,非常小或非常大的星团的行为已经被广泛研究。在这个项目中,研究人员约瑟夫·法容的工作弥合了这些差距。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodolfo Rosales其他文献

Trans-border worker citizens: Hemispheric labor and the many faces of citizenship
  • DOI:
    10.1057/lst.2013.29
  • 发表时间:
    2013-12-10
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Rodolfo Rosales
  • 通讯作者:
    Rodolfo Rosales

Rodolfo Rosales的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodolfo Rosales', 18)}}的其他基金

Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
  • 批准号:
    1719637
  • 财政年份:
    2017
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Gradient-augmented level set methods and jet schemes
合作研究:梯度增强水平集方法和喷射方案
  • 批准号:
    1318942
  • 财政年份:
    2013
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical approaches for incompressible viscous flows with high order accuracy up to the boundary
合作研究:不可压缩粘性流的数值方法,具有高阶精度直至边界
  • 批准号:
    1115278
  • 财政年份:
    2011
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Phantom traffic jams, continuum modeling, and connections with detonation wave theory
合作研究:虚拟交通堵塞、连续介质建模以及与爆震波理论的联系
  • 批准号:
    1007967
  • 财政年份:
    2010
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Standard Grant
Capturing subgrid structures with level set methods
使用水平集方法捕获子网格结构
  • 批准号:
    0813648
  • 财政年份:
    2008
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
Nonlinear Wave Interactions
非线性波相互作用
  • 批准号:
    9802713
  • 财政年份:
    1998
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Hyperbolic and Dispersive Waves
数学科学:非线性双曲波和色散波
  • 批准号:
    9311438
  • 财政年份:
    1993
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
U.S.-Argentina Cooperative Research: Catastrophic Instabilities in Square Wave Detonations
美国-阿根廷合作研究:方波爆炸中的灾难性不稳定性
  • 批准号:
    9016555
  • 财政年份:
    1991
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Waves in Nonlinear Dispersive and Hyperbolic Systems
数学科学:非线性色散和双曲系统中的波
  • 批准号:
    9008520
  • 财政年份:
    1990
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Waves in Nonlinear Dispersive and Hyperbolic Systems
数学科学:非线性色散和双曲系统中的波
  • 批准号:
    8702625
  • 财政年份:
    1987
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
  • 批准号:
    EP/Y034694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Research Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
  • 批准号:
    2409093
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Standard Grant
Student Design Essay Competition "Challenges in the Design of Complex Systems"; Travel Support to ASME IDETC 2024, ASME IDETC 2025, and ASME IDETC 2026 Conferences
学生设计征文比赛“复杂系统设计中的挑战”;
  • 批准号:
    2345214
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Standard Grant
Expert Network for Novel Foods Regulatory Challenges – UK's first collaboration cluster to support best practice and facilitate the regulatory approval journey of innovative food ingredients
新食品监管挑战专家网络 — 英国首个支持最佳实践并促进创新食品成分监管审批进程的合作集群
  • 批准号:
    10114832
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Collaborative R&D
Lignin-based coatings: A novel approach to turn challenges into opportunities for anti-corrosion and anti-wear applications
木质素涂料:一种将防腐和抗磨损应用挑战转化为机遇的新方法
  • 批准号:
    EP/Y022009/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Research Grant
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Research Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Research Grant
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
  • 批准号:
    EP/Y002539/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Research Grant
CAREER: Going Beyond the Dyad: A Network Theory for Understanding the Challenges of Friendship
职业:超越二元:理解友谊挑战的网络理论
  • 批准号:
    2340942
  • 财政年份:
    2024
  • 资助金额:
    $ 11.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了