Collaborative Research: Gradient-augmented level set methods and jet schemes
合作研究:梯度增强水平集方法和喷射方案
基本信息
- 批准号:1318942
- 负责人:
- 金额:$ 17.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on high-order generalizations of semi-Lagrangian approaches, called jet schemes (in the context of the transport of field quantities), and the gradient-augmented level set method (GALSM, in the context of interface tracking). These numerical methods achieve high-order of accuracy by tracking certain derivatives of the solution along characteristics. They are optimally local, in the sense that the data used to update the solution at a grid point is located only in a single grid cell, independent of the scheme's order. Moreover, the use of cell-based Hermite interpolations yields a certain level of subgrid resolution, which allows the GALSM to capture structures smaller than the grid resolution. The research in this project focuses on the numerical analysis and parallel performance of the new approaches, as well as their combination with adaptive mesh refinement and with Lagrangian particles. In addition, jet schemes are applied to kinetic equations, and the GALSM is applied to Hamilton-Jacobi equations. The latter results in the introduction of limiters, and provides a path to gradient-augmented re-initialization.The accurate detection, tracking, and computation of interfaces (curves and surfaces) is an important problem in many areas of science and technology, such as: gas-liquid interfaces in computational fluid dynamics, phase transitions in materials, weather fronts, the motion of biological membranes, edge detection in medical imaging, flame fronts, and shock fronts in supersonic flows. The methods developed in this project allow the computational tracking of interfaces, as well as the evolution of field quantities, with high accuracy. At the same time, they are computationally efficient and very modular. Moreover, they are advantageous for the capture of small structures. This project involves an international collaboration, as well as the training of graduate and undergraduate students.
该项目侧重于半拉格朗日方法的高阶推广,称为射流方案(在场量输运的背景下),以及梯度增强水平集方法(GALSM,在界面跟踪的背景下)。这些数值方法通过沿特征跟踪解的某些导数来达到高阶精度。它们是最优局部的,这意味着用于在网格点更新解决方案的数据仅位于单个网格单元中,与方案的顺序无关。此外,使用基于单元格的Hermite插值产生一定程度的子网格分辨率,这使得GALSM可以捕获比网格分辨率更小的结构。本课题的研究重点是新方法的数值分析和并行性能,以及它们与自适应网格细化和拉格朗日粒子的结合。此外,将射流格式应用于动力学方程,将GALSM应用于Hamilton-Jacobi方程。后者导致引入限制器,并提供了梯度增强重新初始化的路径。界面(曲线和曲面)的精确检测、跟踪和计算是许多科学和技术领域的一个重要问题,例如:计算流体动力学中的气液界面、材料中的相变、天气锋面、生物膜的运动、医学成像中的边缘检测、火焰锋面和超音速流动中的激波锋面。本项目开发的方法允许对界面进行计算跟踪,以及场量的演变,具有很高的精度。同时,它们的计算效率很高,而且非常模块化。此外,它们有利于捕获小结构。该项目涉及国际合作,以及研究生和本科生的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodolfo Rosales其他文献
Trans-border worker citizens: Hemispheric labor and the many faces of citizenship
- DOI:
10.1057/lst.2013.29 - 发表时间:
2013-12-10 - 期刊:
- 影响因子:0.900
- 作者:
Rodolfo Rosales - 通讯作者:
Rodolfo Rosales
Rodolfo Rosales的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodolfo Rosales', 18)}}的其他基金
Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
- 批准号:
1719637 - 财政年份:2017
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Numerical approaches for incompressible viscous flows with high order accuracy up to the boundary
合作研究:不可压缩粘性流的数值方法,具有高阶精度直至边界
- 批准号:
1115278 - 财政年份:2011
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Phantom traffic jams, continuum modeling, and connections with detonation wave theory
合作研究:虚拟交通堵塞、连续介质建模以及与爆震波理论的联系
- 批准号:
1007967 - 财政年份:2010
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Capturing subgrid structures with level set methods
使用水平集方法捕获子网格结构
- 批准号:
0813648 - 财政年份:2008
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
New Challenges in Aggregation Kinetics
聚集动力学的新挑战
- 批准号:
0703937 - 财政年份:2007
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Hyperbolic and Dispersive Waves
数学科学:非线性双曲波和色散波
- 批准号:
9311438 - 财政年份:1993
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
U.S.-Argentina Cooperative Research: Catastrophic Instabilities in Square Wave Detonations
美国-阿根廷合作研究:方波爆炸中的灾难性不稳定性
- 批准号:
9016555 - 财政年份:1991
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Waves in Nonlinear Dispersive and Hyperbolic Systems
数学科学:非线性色散和双曲系统中的波
- 批准号:
9008520 - 财政年份:1990
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Waves in Nonlinear Dispersive and Hyperbolic Systems
数学科学:非线性色散和双曲系统中的波
- 批准号:
8702625 - 财政年份:1987
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: A hydrological seesaw and its effect on alkalinity dynamics in estuaries along a climate gradient
合作研究:水文跷跷板及其对气候梯度河口碱度动态的影响
- 批准号:
2319434 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: A hydrological seesaw and its effect on alkalinity dynamics in estuaries along a climate gradient
合作研究:水文跷跷板及其对气候梯度河口碱度动态的影响
- 批准号:
2319435 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Applying the stress gradient hypothesis to understand the microbial facilitation of seagrass responses to thermal stress
合作研究:应用应力梯度假设来了解海草对热应力反应的微生物促进作用
- 批准号:
2311577 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Testing the Role that Biotic Interactions Play in the Latitudinal Diversity Gradient: A Chemical Community Ecology Approach to Understanding Tree Diversity
合作研究:测试生物相互作用在纬度多样性梯度中发挥的作用:理解树木多样性的化学群落生态学方法
- 批准号:
2240431 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Testing the Role that Biotic Interactions Play in the Latitudinal Diversity Gradient: A Chemical Community Ecology Approach to Understanding Tree Diversity
合作研究:测试生物相互作用在纬度多样性梯度中发挥的作用:理解树木多样性的化学群落生态学方法
- 批准号:
2240430 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
- 批准号:
2307466 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Applying the stress gradient hypothesis to understand the microbial facilitation of seagrass responses to thermal stress
合作研究:应用应力梯度假设来了解海草对热应力反应的微生物促进作用
- 批准号:
2311578 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
- 批准号:
2310100 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
- 批准号:
2310101 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
- 批准号:
2307465 - 财政年份:2023
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant