Mathematical Analysis of the Dynamics of Complex Quantum Systems
复杂量子系统动力学的数学分析
基本信息
- 批准号:1716198
- 负责人:
- 金额:$ 30.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ordinarily, quantum phenomena are exhibited on very small micro-scales, while on large macro-scales nature is well described by classical, Newtonian mechanics. One of the principal subjects of investigation in this project is a Bose-Einstein condensate (BEC), for which macroscopic quantum phenomena become apparent. A BEC is a new state of matter that was first predicted theoretically by Bose and Einstein in 1924, and was produced experimentally in 1995 by Cornell and Wieman. Particles of a gas, cooled very close to absolute zero, occupy the lowest quantum state; then the gas forms a BEC. This state of matter has very unusual properties: for example, light in a BEC can be stopped entirely or slowed down significantly to the velocity of 17 meters per second. This project investigates dynamical properties of important quantum systems from a rigorous mathematical viewpoint, by using a wide variety of methods from mathematical analysis, applied mathematics, and mathematical physics. One of the phenomena to be studied theoretically is the emergence of quantum friction, when a particle passes through a BEC. The purpose of this work is to advance the understanding of physical phenomena based on first principles, whereby giving theoretical physics a rigorous mathematical foundation. The mathematical study of interacting Bose gases is an active research topic at the interface between dispersive nonlinear PDEs and Mathematical Physics. The mean-field description of a BEC is given by the nonlinear Schrödinger or nonlinear Hartree equations. In this project, the dynamics of a quantum mechanical tracer particle in interaction with a BEC will be investigated. Of particular interest in this model is the emergence of quantum friction. Furthermore, the dynamics of thermal fluctuations around a BEC will be examined based on the Hartree-Fock-Bogoliubov equation that is obtained from the quasifree reduction of the original system. Other continuing projects focus on the dynamics of electrons in a weak random potential (describing materials such as semiconductors), and dynamics of a system of infinitely many fermions in the vicinity of a thermal equilibrium. As a new research direction, the well-posedness problem for the Boltzmann equation will be studied in its Wigner-transformed representation. This makes the model accessible to methods developed for the analysis of nonlinear Schrödinger equations and Gross-Pitaevskii hierarchies, such as Strichartz estimates for density matrices. These projects involve collaborations with various leading senior researchers, with a postdoctoral researcher, and with graduate students.
通常,量子现象表现在非常小的微观尺度上,而在大的宏观尺度上,自然是很好地描述了经典,牛顿力学。该项目的主要研究对象之一是玻色-爱因斯坦凝聚(BEC),宏观量子现象变得明显。BEC是一种新的物质状态,由玻色和爱因斯坦在1924年首次从理论上预测,并于1995年由康奈尔和威曼在实验上产生。气体的粒子,冷却到非常接近绝对零度,占据最低的量子态;然后气体形成BEC。这种物质状态具有非常不寻常的特性:例如,BEC中的光可以完全停止或显著减慢到每秒17米的速度。本课题从严格的数学观点出发,运用数学分析、应用数学、数学物理等多种方法,研究重要量子系统的动力学性质。理论上要研究的现象之一是量子摩擦的出现,当粒子通过BEC时。这项工作的目的是推进基于第一原理的物理现象的理解,从而为理论物理学提供严格的数学基础。 相互作用玻色气体的数学研究是色散非线性偏微分方程和数学物理之间的一个活跃的研究课题。BEC的平均场描述由非线性薛定谔方程或非线性哈特里方程给出。在这个项目中,将研究量子力学示踪粒子与BEC相互作用的动力学。在这个模型中,特别令人感兴趣的是量子摩擦的出现。此外,BEC周围的热涨落的动力学将被检查的基础上的Hartree-Fock-Bogoliubov方程,这是从原始系统的准自由约化。其他持续的项目集中在弱随机势中的电子动力学(描述半导体等材料),以及热平衡附近无限多费米子系统的动力学。作为一个新的研究方向,玻尔兹曼方程的适定性问题将在其Wigner变换表示下进行研究。这使得该模型可以用于分析非线性薛定谔方程和Gross-Pitaevskii层次结构的方法,例如密度矩阵的Eschenhartz估计。这些项目涉及与各种领先的高级研究人员,博士后研究人员和研究生的合作。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Well-Posedness for Boltzmann’s Equation and the Boltzmann Hierarchy via Wigner Transform
通过维格纳变换求解玻尔兹曼方程和玻尔兹曼层次结构的局部适定性
- DOI:10.1007/s00220-019-03307-9
- 发表时间:2019
- 期刊:
- 影响因子:2.4
- 作者:Chen, Thomas;Denlinger, Ryan;Pavlović, Nataša
- 通讯作者:Pavlović, Nataša
Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates
通过双线性时空估计的玻尔兹曼方程的小数据全局适定性
- DOI:10.1007/s00205-021-01613-y
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Chen, Thomas;Denlinger, Ryan;Pavlović, Nataša
- 通讯作者:Pavlović, Nataša
Moments and regularity for a Boltzmann equation via Wigner transform
- DOI:10.3934/dcds.2019204
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Thomas Chen;Ryan Denlinger;N. Pavlović
- 通讯作者:Thomas Chen;Ryan Denlinger;N. Pavlović
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Chen其他文献
Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3
3 维小无序情况下安德森模型的定位长度和玻尔兹曼极限
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Thomas Chen - 通讯作者:
Thomas Chen
Boltzmann limit and quasifreeness for a homogeneous Fermion gas in a random medium
随机介质中均质费米子气体的玻尔兹曼极限和准自由度
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Thomas Chen;Itaru Sasaki - 通讯作者:
Itaru Sasaki
Enhanced binding for N-particle system interacting with a scalar bose field I
N 粒子系统与标量玻色场 I 相互作用的增强结合
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Thomas Chen;Itaru Sasaki;佐々木 格;佐々木 格;廣島 文生 - 通讯作者:
廣島 文生
Critical manifolds and stability in Hamiltonian systems with non-holonomic constraints
具有非完整约束的哈密顿系统的临界流形和稳定性
- DOI:
10.1016/j.geomphys.2003.08.004 - 发表时间:
2003 - 期刊:
- 影响因子:1.5
- 作者:
Thomas Chen - 通讯作者:
Thomas Chen
Interferon‐Gamma (IFN‐γ) and Interleukin‐6 (IL‐6) in Peritoneal Fluid and Macrophage‐Conditioned Media of Women With Endometriosis
子宫内膜异位症女性腹腔液和巨噬细胞条件培养基中的干扰素-γ (IFN-γ) 和白细胞介素-6 (IL-6)
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:3.6
- 作者:
J. Keenan;Thomas Chen;N. Chadwell;D. Torry;M. Caudle - 通讯作者:
M. Caudle
Thomas Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Chen', 18)}}的其他基金
Mathematical Analysis of Dispersion and Transport in Quantum Dynamics
量子动力学中色散和输运的数学分析
- 批准号:
2009800 - 财政年份:2020
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
Texas Analysis and Mathematical Physics Symposium 2017
2017年德州分析与数学物理研讨会
- 批准号:
1739320 - 财政年份:2017
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
EconoMical, PsycHologicAl and Societal Impact of RanSomware (EMPHASIS)
RanSomware 的经济、心理和社会影响 (EMPHASIS)
- 批准号:
EP/P011861/1 - 财政年份:2017
- 资助金额:
$ 30.99万 - 项目类别:
Research Grant
SEEK (Steganalytic vidEo rEsearch frameworK)
SEEK(隐写分析视频研究框架)
- 批准号:
EP/N028554/1 - 财政年份:2016
- 资助金额:
$ 30.99万 - 项目类别:
Research Grant
NRT-DESE: Generating, Analyzing, and Understanding Sensory and Sequencing Information--A Trans-Disciplinary Graduate Training Program in Biosensing and Computational Biology
NRT-DESE:生成、分析和理解感官和测序信息——生物传感和计算生物学跨学科研究生培训项目
- 批准号:
1450032 - 财政年份:2015
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Texas Analysis and Mathematical Physics Symposium
德克萨斯分析与数学物理研讨会
- 批准号:
1412627 - 财政年份:2014
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
App Collusion Detection (ACID)
应用程序合谋检测 (ACID)
- 批准号:
EP/L022699/1 - 财政年份:2014
- 资助金额:
$ 30.99万 - 项目类别:
Research Grant
CAREER: Dynamics of complex quantum systems, scaling limits and renormalization
职业:复杂量子系统的动力学、尺度限制和重正化
- 批准号:
1151414 - 财政年份:2012
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Dynamics of complex quantum systems with randomness and nonlinearities
具有随机性和非线性的复杂量子系统的动力学
- 批准号:
1009448 - 财政年份:2010
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
New, GK-12: A Multi-Disciplinary Research and Teaching Program in Biomedical Engineering for Discovery and Understanding of Cell Communication
新产品,GK-12:生物医学工程中的多学科研究和教学项目,旨在发现和理解细胞通讯
- 批准号:
0841259 - 财政年份:2009
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
- 批准号:
23K03208 - 财政年份:2023
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
- 批准号:
RGPIN-2022-05067 - 财政年份:2022
- 资助金额:
$ 30.99万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and genetical analysis on the Delta-Notch signaling dynamics in bile duct formation
胆管形成中 Delta-Notch 信号动力学的数学和遗传学分析
- 批准号:
21J20959 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
- 批准号:
RGPIN-2016-05769 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Discovery Grants Program - Individual
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Analysis of aerosol transmission dynamics and estimation of potential risks of transmission using mathematical models.
使用数学模型分析气溶胶传播动力学并估计传播的潜在风险。
- 批准号:
21K04377 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
- 批准号:
RGPIN-2016-05769 - 财政年份:2020
- 资助金额:
$ 30.99万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of pattern dynamics of reaction-diffusion systems and their singular limit problems
反应扩散系统模式动力学及其奇异极限问题的数学分析
- 批准号:
20H01816 - 财政年份:2020
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 30.99万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical Analysis of Dispersion and Transport in Quantum Dynamics
量子动力学中色散和输运的数学分析
- 批准号:
2009800 - 财政年份:2020
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant














{{item.name}}会员




