Nonequilibrium Quantum Mechanics of Strongly Correlated Systems

强相关系统的非平衡量子力学

基本信息

  • 批准号:
    0705584
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research and education to address a fundamental question in quantum condensed matter physics: How do condensed matter systems behave when they are driven far from equilibrium? The PI aims to investigate how standard methods that have proven very successful in revealing the quantum ground states of many body systems may be extended and applied to nonequilibrium systems. These methods include mean-field theory, fluctuations about mean field and the renormalization group. The PI will focus on two classes of systems: The first class is quantum impurity models that are coupled to external reservoirs. The second class is spatially extended systems that are close to an ordering-disordering quantum phase transition. The PI will address the following issues: a). The precise mechanism underlying nonequilibrium induced decoherence, and the extent to which decoherence may be regarded as an effective temperature; b). Conditions under which a nonequilibrium probe can produce instabilities that could drive the many body system to a novel steady state or a time dependent dynamical state with no thermal analog; c). The effect of conservation laws on nonequilibrium induced phase transitions. The outcome of the research will be relevant to experiments in quantum dots, single molecule devices, spintronics and driven cold atom systems.This award supports guidance and training to students. By providing them with an opportunity to interact with theoretical and experimental groups in the physics department, as well as with members of the Courant Institute of Mathematical Sciences at New York University, students will get a broad exposure and a well rounded education. NON-TECHNICAL SUMMARY:This award supports theoretical research and education to study condensed matter systems that are out of balance with their surroundings and for which quantum mechanics dominates. These quantum nonequilibrium systems include atomic structures on the nanoscale, such as quantum dots and molecules. For these systems, the successful theoretical methods developed to understand and describe systems that are in balance with their surroundings do not work and the PI seeks to develop extensions of these equilibrium methods to nonequilibrium systems, particularly those in a steady state, such as constant electric current going through a molecule or nanostructure. This general problem also arises in atomic and optical physics, biophysics and quantum information theory and the PI's approach should apply to a broad range of nonequilibrium systems. This research contributes to the broad fundamental understanding of the world around us. The focus of the research on nanostructures and systems of impurities is particularly relevant to contributing to the theoretical foundations to enable the design of possible future electronic devices and information technology.This award also supports guidance and training of students. By providing them with an opportunity to interact with theoretical and experimental groups in the physics department, as well as with members of the Courant Institute of Mathematical Sciences at New York University, students will get a broad exposure and a well rounded education.
该奖项支持理论研究和教育,以解决量子凝聚态物理学中的一个基本问题:凝聚态系统在远离平衡时如何表现?PI的目的是研究如何标准的方法,已被证明是非常成功的揭示量子基态的许多身体系统可以扩展和应用到非平衡系统。这些方法包括平均场理论、平均场涨落和重整化群。PI将集中在两类系统:第一类是耦合到外部水库的量子杂质模型。第二类是接近有序-无序量子相变的空间扩展系统。PI将解决以下问题:a)。非平衡诱导退相干的精确机制,以及退相干可被视为有效温度的程度; B)。非平衡探针可以产生不稳定性的条件,这些不稳定性可以将多体系统驱动到新的稳态或没有热模拟的时间依赖的动态状态; c)。守恒定律对非平衡诱导相变的影响。该研究成果将与量子点、单分子器件、自旋电子学和驱动冷原子系统的实验相关。该奖项支持对学生的指导和培训。通过为他们提供与物理系的理论和实验小组以及纽约大学柯朗数学科学研究所成员互动的机会,学生将获得广泛的曝光和全面的教育。非技术总结:该奖项支持理论研究和教育,以研究与周围环境不平衡的凝聚态系统,量子力学占主导地位。这些量子非平衡系统包括纳米尺度上的原子结构,如量子点和分子。对于这些系统,成功的理论方法来理解和描述与周围环境平衡的系统并不起作用,PI试图将这些平衡方法扩展到非平衡系统,特别是那些处于稳态的系统,例如通过分子或纳米结构的恒定电流。这个普遍的问题也出现在原子和光学物理学,生物物理学和量子信息理论和PI的方法应该适用于广泛的非平衡系统。这项研究有助于对我们周围的世界进行广泛的基本了解。纳米结构和杂质系统的研究重点特别与为未来电子设备和信息技术的设计提供理论基础有关。该奖项还支持学生的指导和培训。通过为他们提供与物理系的理论和实验小组以及纽约大学柯朗数学科学研究所成员互动的机会,学生将获得广泛的曝光和全面的教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditi Mitra其他文献

Circumferential Partial-Thickness Burn Caused by Mobile Telephone Charger: A Case Report
  • DOI:
    10.1016/j.annemergmed.2019.05.026
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carissa Bunke;Andrew N. Hashikawa;Aditi Mitra
  • 通讯作者:
    Aditi Mitra
Floquet Product Mode
Floquet产品模式
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsiu;Achim Rosch;Aditi Mitra
  • 通讯作者:
    Aditi Mitra
周期駆動された異方的Dirac電子系に現れる多彩な光誘起Weyl半金属相
周期性驱动各向异性狄拉克电子系统中出现的各种光致外尔半金属相
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    奥村 駿;Aditi Mitra;岡 隆史
  • 通讯作者:
    岡 隆史
Topological transitions and anomalous Hall effect in periodically driven Dirac semimetals
周期性驱动狄拉克半金属中的拓扑转变和反常霍尔效应
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Okumura;Aditi Mitra;Takashi Oka
  • 通讯作者:
    Takashi Oka
Tissue Plasminogen Activator-Induced Angioedema in Ischemic Stroke Patient
  • DOI:
    10.1016/j.chest.2017.08.034
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aditi Mitra;Vishal Patel
  • 通讯作者:
    Vishal Patel

Aditi Mitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditi Mitra', 18)}}的其他基金

Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    2018358
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Active and Driven Matter: Connecting Quantum and Classical Systems
主动和驱动物质:连接量子和经典系统
  • 批准号:
    1921068
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1607059
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1303177
  • 财政年份:
    2013
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1004589
  • 财政年份:
    2010
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    2018358
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Operational nonequilibrium statistical mechanics for isolated quantum systems
孤立量子系统的操作非平衡统计力学
  • 批准号:
    18K03467
  • 财政年份:
    2018
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formulation of quantum gravity theory based on relativistic nonequilibrium statistical mechanics
基于相对论非平衡统计力学的量子引力理论的表述
  • 批准号:
    16K05321
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1607059
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
nonequilibrium statistical mechanics and operation of quantum many-body systems
非平衡统计力学和量子多体系统的运行
  • 批准号:
    26800206
  • 财政年份:
    2014
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1303177
  • 财政年份:
    2013
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Entropic Fluctuations in Nonequilibrium Quantum Statistical Mechanics
非平衡量子统计力学中的熵涨落
  • 批准号:
    425944-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Mutual application of quantum physics and nonequilibrium statistical mechanics
量子物理与非平衡统计力学的相互应用
  • 批准号:
    22540407
  • 财政年份:
    2010
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1004589
  • 财政年份:
    2010
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了