Nonequilibrium Quantum Mechanics of Strongly Correlated Systems

强相关系统的非平衡量子力学

基本信息

  • 批准号:
    1607059
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-01 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY:The award supports research and education on the dynamics of complex systems where both quantum mechanics as well as strong interactions between many particles are important. This challenging regime has many open questions of relevance for a new generation of experiments and quantum devices. The PI and her research team will study how such systems evolve in time, whether their collective temporal behavior can show some system-independent universal properties, and under what conditions traces of their initial state disappear completely. The projects will bring together concepts from diverse fields of physics.The award has a strong educational component that involves the active participation of graduate and undergraduate students, and a postdoctoral research scientist. The results of the projects will be presented at workshops and conferences, and will be incorporated in a review article in a journal widely read by the community. The project will lead to the development of new theoretical approaches to study the dynamics of complex systems, and will address fundamental questions of relevance to quantum information and quantum computing. The PI will also participate in outreach activities that are part of a continuing partnership between the NYU physics department and local schools.TECHNICAL SUMMARY:The award supports research and education on nonequilibrium phenomena in strongly correlated quantum systems. The focus will be to study quench dynamics in closed and open quantum systems with applications to cold-atomic gases, ultra-fast pump-probe spectroscopy of solid-state systems, and light-matter coupled systems.The project has several components:a) The research team will build on their recent work where universal aging behavior was found after a quantum quench to the critical point of an isolated bosonic O(N) model, and explore similar universality in other kinds of bosonic and fermionic models. Large-N and dimensional expansions methods will be used to study the time-evolution, and to identify scaling behavior at intermediate times, as well as light-cone dynamics.b) The research team will also study the dynamics of entanglement entropy and entanglement spectrum after a quantum quench. This study will be carried out for quenches to the critical point, as well as for interacting one-dimensional systems with strong disorder.c) The research team has access to some exact results for the quench dynamics coming from the large-N limit of interacting field theories. These exact results will be used as a benchmark for developing time-dependent variational methods based on tensor network states.The goal of the projects will be to obtain general results not only on universal dynamics after a quantum quench, but also on the dynamics of entanglement entropy and entanglement spectra. Thus, results will be obtained on how fast information travels after a quantum quench, and how this depends on how excited the system is, its dimensionality, proximity to a critical point, range of interactions, and how ergodic the system is. The project will also result in the development of new methods to study nonequilibrium quantum systems.The award has a strong educational component that involves the active participation of graduate, undergraduate students, and a postdoctoral research scientist. The results of the projects will be presented at workshops and conferences, and will be incorporated in a review article on quantum quenches. The award will lead to the development of new theoretical approaches to study nonequilibrium phenomena. Moreover the PI's study of entanglement dynamics will address fundamental questions of relevance to quantum information and quantum computing. In addition, the PI will participate in outreach activities that are part of a continuing partnership between the NYU physics department and local schools.
非技术摘要:该奖项支持复杂系统动力学的研究和教育,在这些系统中,量子力学和许多粒子之间的强相互作用都很重要。这种具有挑战性的制度有许多与新一代实验和量子设备相关的悬而未决的问题。PI和她的研究团队将研究这些系统如何在时间上演化,它们的集体时间行为是否可以显示出一些系统独立的普遍属性,以及在什么条件下它们的初始状态的痕迹完全消失。这些项目将汇集不同物理领域的概念。该奖项具有很强的教育成分,包括研究生和本科生以及一名博士后研究科学家的积极参与。这些项目的结果将在研讨会和会议上公布,并将被纳入一份社区广泛阅读的期刊上的评论文章中。该项目将导致开发新的理论方法来研究复杂系统的动力学,并将解决与量子信息和量子计算相关的基本问题。PI还将参与纽约大学物理系和当地学校之间持续合作伙伴关系的扩展活动。技术摘要:该奖项支持强关联量子系统中非平衡现象的研究和教育。重点是研究封闭和开放量子系统中的猝灭动力学,并将其应用于冷原子气体、固体系统的超快泵浦-探测光谱和光-物质耦合系统。该项目由几个部分组成:a)研究小组将在他们最近的工作基础上,在孤立玻色子O(N)模型的临界点量子猝灭后发现普遍的老化行为,并探索其他类型的玻色子和费米子模型中类似的普适性。大N和维展开法将被用来研究时间演化,并确定中间时间的标度行为,以及光锥动力学。b)研究小组还将研究量子猝灭后纠缠熵和纠缠谱的动力学。这项研究将针对猝灭到临界点,以及相互作用的一维强无序系统进行。c)研究小组获得了来自相互作用场理论大N极限的猝灭动力学的一些精确结果。这些精确的结果将被用作发展基于张量网络态的含时变分方法的基准,这些项目的目标将不仅是获得关于量子猝灭后的宇宙动力学的一般结果,而且还将获得关于纠缠熵和纠缠光谱的动力学的一般结果。因此,在量子猝灭后,信息的传播速度将得到结果,这取决于系统的兴奋程度、其维度、与临界点的接近程度、相互作用的范围,以及系统的遍历程度。该项目还将开发研究非平衡量子系统的新方法。该奖项具有很强的教育成分,包括研究生、本科生和博士后研究科学家的积极参与。这些项目的结果将在研讨会和会议上公布,并将被纳入一篇关于量子猝灭的评论文章中。该奖项将导致研究非平衡现象的新理论方法的发展。此外,PI对纠缠动力学的研究将解决与量子信息和量子计算相关的基本问题。此外,PI将参加纽约大学物理系与当地学校之间持续合作伙伴关系的外展活动。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Critical properties of the Floquet time crystal within the Gaussian approximation
高斯近似内 Floquet 时间晶体的关键属性
  • DOI:
    10.1103/physrevb.103.014305
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Natsheh, Muath;Gambassi, Andrea;Mitra, Aditi
  • 通讯作者:
    Mitra, Aditi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditi Mitra其他文献

Circumferential Partial-Thickness Burn Caused by Mobile Telephone Charger: A Case Report
  • DOI:
    10.1016/j.annemergmed.2019.05.026
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carissa Bunke;Andrew N. Hashikawa;Aditi Mitra
  • 通讯作者:
    Aditi Mitra
Floquet Product Mode
Floquet产品模式
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsiu;Achim Rosch;Aditi Mitra
  • 通讯作者:
    Aditi Mitra
周期駆動された異方的Dirac電子系に現れる多彩な光誘起Weyl半金属相
周期性驱动各向异性狄拉克电子系统中出现的各种光致外尔半金属相
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    奥村 駿;Aditi Mitra;岡 隆史
  • 通讯作者:
    岡 隆史
Topological transitions and anomalous Hall effect in periodically driven Dirac semimetals
周期性驱动狄拉克半金属中的拓扑转变和反常霍尔效应
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Okumura;Aditi Mitra;Takashi Oka
  • 通讯作者:
    Takashi Oka
Tissue Plasminogen Activator-Induced Angioedema in Ischemic Stroke Patient
  • DOI:
    10.1016/j.chest.2017.08.034
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aditi Mitra;Vishal Patel
  • 通讯作者:
    Vishal Patel

Aditi Mitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditi Mitra', 18)}}的其他基金

Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    2018358
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Active and Driven Matter: Connecting Quantum and Classical Systems
主动和驱动物质:连接量子和经典系统
  • 批准号:
    1921068
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1303177
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1004589
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    0705584
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonequilibrium quantum mechanics of strongly correlated systems
强相关系统的非平衡量子力学
  • 批准号:
    2316598
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    2018358
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Operational nonequilibrium statistical mechanics for isolated quantum systems
孤立量子系统的操作非平衡统计力学
  • 批准号:
    18K03467
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formulation of quantum gravity theory based on relativistic nonequilibrium statistical mechanics
基于相对论非平衡统计力学的量子引力理论的表述
  • 批准号:
    16K05321
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
nonequilibrium statistical mechanics and operation of quantum many-body systems
非平衡统计力学和量子多体系统的运行
  • 批准号:
    26800206
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1303177
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Entropic Fluctuations in Nonequilibrium Quantum Statistical Mechanics
非平衡量子统计力学中的熵涨落
  • 批准号:
    425944-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Mutual application of quantum physics and nonequilibrium statistical mechanics
量子物理与非平衡统计力学的相互应用
  • 批准号:
    22540407
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    1004589
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Nonequilibrium Quantum Mechanics of Strongly Correlated Systems
强相关系统的非平衡量子力学
  • 批准号:
    0705584
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了