The Cornell Topology Festival

康奈尔拓扑节

基本信息

  • 批准号:
    0531044
  • 负责人:
  • 金额:
    $ 9.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

This grant will support The Cornell Topology Festival for the next three years, starting in Spring 2006. The Festival has been a strong force in the mathematical life of topologists and geometers in the northeastern United States for the past 42 years, providing a significant arena for the development and dissemination of a broad array of results from within the areas of algebraic, differential, and geometric topology and allied subjects. Each year approximately one-third of the talks will be in a particular area of emphasis. Recent examples are geometric group theory (2003), 3-manifold theory (2004), and symplectic geometry and topology (2005). Each year's Festival will include two introductory workshops in the area of emphasis, to provide a point of entry for interested non-experts and a sense of involvement for all participants. It will also include a broad-ranging panel discussion by the invited speakers, to provide a forward-looking perspective on new developments not covered in the talks. The broader impacts of the Festival include (a) a more broadly-trained community of topologists, able to transcend the boundaries of sub-specialties; (b) a more diverse mathematical workforce; (c) a more rapid integration of younger topologists into areas of current research; and (d) the enhancement of collaboration among researchers in different areas of topology. There is an outreach and support program to encourage the participation of underrepresented groups and young researchers. The training effects of the Festival will be extended by dissemination of lecture notes from the workshops and a summary of the panel discussion; themain vehicle for this is the Festival web site, which has been maintained continuously since 1997.
这笔拨款将在2006年春季开始的未来三年里支持康奈尔拓扑学节。在过去的42年里,这个节日在美国东北部的拓扑学家和几何学家的数学生活中一直是一股强大的力量,为代数、微分、几何拓扑学和相关学科领域的广泛成果的发展和传播提供了一个重要的舞台。每年大约有三分之一的会谈将集中在一个特别的重点领域。最近的例子是几何群论(2003),3流形理论(2004)和辛几何和拓扑(2005)。每年的节日将包括两个重点领域的介绍性讲习班,为感兴趣的非专家提供一个入门点,并为所有参与者提供参与感。会议还将邀请发言者进行范围广泛的小组讨论,就会谈中未涉及的新发展提供前瞻性的观点。该节日更广泛的影响包括:(a)一个更广泛训练的拓扑学家社区,能够超越亚专业的界限;(b)更多样化的数学人才队伍;(c)更迅速地将年轻拓扑学家纳入当前的研究领域;(d)加强不同拓扑学领域研究人员之间的合作。有一个外联和支持计划,鼓励代表性不足的群体和年轻研究人员的参与。将通过散发讲习班的讲稿和小组讨论的摘要来扩大电影节的培训效果;节日的主要载体是节日网站,该网站自1997年以来一直持续维护。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Vogtmann其他文献

The Euler characteristic of the moduli space of graphs
图的模空间的欧拉特征
  • DOI:
    10.1016/j.aim.2023.109290
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Michael Borinsky;Karen Vogtmann
  • 通讯作者:
    Karen Vogtmann
Infinitesimal operations on complexes of graphs
  • DOI:
    10.1007/s00208-003-0465-2
  • 发表时间:
    2003-08-13
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Jim Conant;Karen Vogtmann
  • 通讯作者:
    Karen Vogtmann

Karen Vogtmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Vogtmann', 18)}}的其他基金

What Next? The Mathematical Legacy of Bill Thurston, June 23 - 27, 2014
接下来是什么?
  • 批准号:
    1406302
  • 财政年份:
    2014
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Conference on Approaches to Group Theory
群论方法会议
  • 批准号:
    1039400
  • 财政年份:
    2010
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
  • 批准号:
    1011857
  • 财政年份:
    2010
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
  • 批准号:
    0705960
  • 财政年份:
    2007
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
  • 批准号:
    0204185
  • 财政年份:
    2002
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing Grant
Geometric and Algebraic Topology
几何和代数拓扑
  • 批准号:
    9971607
  • 财政年份:
    1999
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Automorphisms of Free Groups
数学科学:自由群的自同构
  • 批准号:
    8805373
  • 财政年份:
    1988
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometries for Groups
数学科学:群几何
  • 批准号:
    8514548
  • 财政年份:
    1985
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Cohomology of Linear Groups Over Rings of Imaginary Quadratic Integers (Mathematics)
虚数二次整数环上线性群的上同调(数学)
  • 批准号:
    8310340
  • 财政年份:
    1984
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometries For Some Linear Groups; Applications to Algebraic K-Theory, Automorphic Forms, Hyperbolic Geometry, and Singularities
数学科学:某些线性群的几何;
  • 批准号:
    8300873
  • 财政年份:
    1983
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Discovery Projects
Algorithmic topology in low dimensions
低维算法拓扑
  • 批准号:
    EP/Y004256/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.9万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了