Geometric and Algebraic Topology
几何和代数拓扑
基本信息
- 批准号:9971607
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-15 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9971607Principal Investigator: Karen Vogtmann Abstract: This is a group proposal which covers a wide range of topics in topology and geometric group theory, with connections to combinatorics, algebra, probability, and biology. Specifically, the principal investigators propose to study: diffeomorphism groups of manifolds; spaces of knots and links; the automorphism group and outer automorphism group of a free group; Whitehead algorithms for groups; the space of phylogenetic trees; Markov chains associated to hyperplane arrangements, Coxeter groups, and buildings; the topology at infinity of Artin groups; and graphs of generating sets of finite groups. A unifying theme of this research is that of trying to understand abstract, algebraic constructions by relating them to concrete, geometric objects, somewhat as a sequence of abstract operations may be realized as a set of elementary manipulations of a Rubik's cube. The geometric objects in question are often very simple and natural, and can sometimes serve as mathematical models for phenomena in other scientific fields. For example, geometry and algebra have led to new results about Markov chains, which are used for simulations in many areas of science and applied mathematics. In addition, geometric insights often lead to the discovery of new relations between a priori unrelated concepts.
摘要:这是一个小组提案,涵盖了拓扑和几何群论的广泛主题,并与组合学、代数、概率论和生物学有联系。具体来说,主要研究者建议研究:流形的微分同构群;结和链的空间;自由群的自同构群和外自同构群;群体的Whitehead算法;系统发育树的空间;与超平面排列、Coxeter群和结构相关的马尔可夫链;Artin群无穷远处的拓扑;和有限群的生成集的图。本研究的一个统一主题是,通过将抽象的代数结构与具体的几何对象联系起来,试图理解抽象的代数结构,就像一系列抽象操作可以被实现为一组基本的魔方操作。所讨论的几何对象通常非常简单和自然,有时可以作为其他科学领域现象的数学模型。例如,几何和代数导致了关于马尔可夫链的新结果,它被用于许多科学和应用数学领域的模拟。此外,几何洞见常常导致发现先验的不相关概念之间的新关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Vogtmann其他文献
The Euler characteristic of the moduli space of graphs
图的模空间的欧拉特征
- DOI:
10.1016/j.aim.2023.109290 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:1.500
- 作者:
Michael Borinsky;Karen Vogtmann - 通讯作者:
Karen Vogtmann
Infinitesimal operations on complexes of graphs
- DOI:
10.1007/s00208-003-0465-2 - 发表时间:
2003-08-13 - 期刊:
- 影响因子:1.400
- 作者:
Jim Conant;Karen Vogtmann - 通讯作者:
Karen Vogtmann
Karen Vogtmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Vogtmann', 18)}}的其他基金
What Next? The Mathematical Legacy of Bill Thurston, June 23 - 27, 2014
接下来是什么?
- 批准号:
1406302 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Automorphisms of Free Groups
数学科学:自由群的自同构
- 批准号:
8805373 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometries for Groups
数学科学:群几何
- 批准号:
8514548 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Standard Grant
Cohomology of Linear Groups Over Rings of Imaginary Quadratic Integers (Mathematics)
虚数二次整数环上线性群的上同调(数学)
- 批准号:
8310340 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometries For Some Linear Groups; Applications to Algebraic K-Theory, Automorphic Forms, Hyperbolic Geometry, and Singularities
数学科学:某些线性群的几何;
- 批准号:
8300873 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Algebraic and Geometric Topology In Dimensions Three and Four
三维和四维的代数和几何拓扑
- 批准号:
2267124 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Problems in Geometric, Algebraic and Quantitative Topology
几何、代数和定量拓扑问题
- 批准号:
1510178 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Connections between algebraic and geometric invariants in low-dimensional topology
职业:低维拓扑中代数和几何不变量之间的联系
- 批准号:
1151671 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual