Semiparametric and Nonparametric Methods of Model Selection and Model Checking for Correlated Data
相关数据的模型选择和模型检验的半参数和非参数方法
基本信息
- 批准号:0706842
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Model selection and model checking are fundamental to statistical analysis. The main objective of model selection is to identify parsimonious well-fitting models in order to balance the increase in model fit against the increase in model complexity; and that of model checking is to assess or test the validity of a proposed model. An enormous amount of literature is available for independent data in this research area. For correlated data, however, there exists only fragmented work and the asymptotic theory is largely undeveloped, mainly due to (1) the lack of a rich class of models such as multivariate Gaussian for the joint distributions of the responses, (2) the complexity of the joint likelihood even when such a multivariate family of distributions is available. These obstacles make it extremely challenging, if not impossible, to apply existing model selection and model checking procedures that were developed for independent data or based on full likelihood. This project addresses this challenge by developing a set of semiparametric and nonparametric tools for model selection and model checking for correlated data, including model checking procedures based on moment conditions via the recently developed quadratic inference function and rank-based estimation equations; data-driven model checking procedures that allow for flexible alternative and increase general power performance. The large sample theory and practical performance will be investigated in depth in this project. Also on the agenda are related research issues, such as the characterization of rank regression under possible model misspecification and the theoretical robustness properties of rank-based model selection algorithms.Correlated data frequently occur in many fields, such as biomedical and health sciences, economics, social sciences and environmental studies. This work will greatly enhance the available methodologies and theories for model selection and model checking. The investigator will develop computational packages that can be easily implemented by statisticians and scientists. This project will provide scientists with new and flexible tools for analyzing high-dimensional correlated data. Education will be an important component. The research results will be incorporated at different levels of statistical courses. Undergraduate and graduate students, especially those from underrepresented groups, will be encouraged to participate in this research project.
模型选择和模型检验是统计分析的基础。模型选择的主要目标是确定简约的拟合模型,以平衡模型拟合的增加与模型复杂性的增加;模型检查的主要目标是评估或测试拟议模型的有效性。大量的文献可用于独立的数据在这一研究领域。 然而,对于相关数据,只存在零散的工作,渐近理论在很大程度上尚未开发,主要是由于(1)缺乏丰富的模型,如多变量高斯模型,用于响应的联合分布,(2)即使这样的多变量分布族可用,联合似然的复杂性。这些障碍使得应用为独立数据或基于完全可能性开发的现有模型选择和模型检查程序极具挑战性,如果不是不可能的话。该项目通过开发一套用于相关数据的模型选择和模型检查的半参数和非参数工具来解决这一挑战,包括基于矩条件的模型检查程序,通过最近开发的二次推理函数和基于秩的估计方程;数据驱动的模型检查程序,允许灵活的替代方案并提高一般功率性能。本项目将对大样本理论和实际性能进行深入研究。相关研究问题也在会议议程上,例如在可能的模型错误设定下的秩回归的表征和基于秩的模型选择算法的理论鲁棒性。相关数据经常出现在许多领域,例如生物医学和健康科学,经济学,社会科学和环境研究。这一工作将极大地丰富现有的模型选择和模型检验的方法和理论。调查员将开发统计学家和科学家可以轻松实施的计算软件包。该项目将为科学家提供新的和灵活的工具来分析高维相关数据。教育将是一个重要组成部分。研究结果将纳入各级统计课程。本科生和研究生,特别是那些来自代表性不足的群体,将被鼓励参加这个研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Wang其他文献
Destabilization of AETFC through C/EBP alpha-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation
C/EBP α 介导的 LYL1 抑制导致 AETFC 不稳定,导致 t(8;21) 白血病细胞分化
- DOI:
10.1038/s41375-019-0398-8 - 发表时间:
2019 - 期刊:
- 影响因子:11.4
- 作者:
Zhang Meng Meng;Liu Na;Zhang Yuan Liang;Rong Bowen;Wang Xiao Lin;Xu Chun Hui;Xie Yin Yin;Shen Shuhong;Zhu Jiang;Nimer Stephen D;Chen Zhu;Chen Sai Juan;Roeder Robert G;Lan Fei;Lan Wang;Huang Qiu Hua;Sun Xiao Jian - 通讯作者:
Sun Xiao Jian
CDKN1C (P57): one of the determinants of human endometrial stromal cell decidualization.[Epub ahead of print](SCI收录,影响因子3.4)
- DOI:
10.1093/biolre/iox187 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;Hui Yang;Linli Hu;Dan Hu;Hanwang Zhang;Kun Qian(钱坤;通讯作者) - 通讯作者:
通讯作者)
Discovery and geological significance of high quality hydrocarbon source rocks in interglacial of Neoproterozoic in the eastern part of the southern margin of North China
华北南缘东部新元古代间冰期优质烃源岩的发现及其地质意义
- DOI:
10.1016/j.jnggs.2018.06.001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shengfei Qin;P. Luo;Tongshan Wang;Lan Wang;Kui Ma - 通讯作者:
Kui Ma
Automatic characterization of leukemic cells with 2D light scattering static cytometry
使用二维光散射静态细胞术自动表征白血病细胞
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;Qiao Liu;Linyan Xie;C. Shao;Xuantao Su - 通讯作者:
Xuantao Su
Terahertz meta-chip switch based on C-ring coupling
基于C环耦合的太赫兹元芯片开关
- DOI:
10.1515/nanoph-2021-0646 - 发表时间:
2022-01 - 期刊:
- 影响因子:7.5
- 作者:
Sen Gong;Hongxin Zeng;Qianyu Zhang;Chunyang Bi;Lan Wang;Tianchi Zhou;Ziqiang Yang;Yaxin Zhang;Fanzhong Meng;Zhenpeng Zhang;Yuan Fang - 通讯作者:
Yuan Fang
Lan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Wang', 18)}}的其他基金
FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
- 批准号:
1952373 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
2023755 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
1940160 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
- 批准号:
1743598 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
- 批准号:
1629769 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512267 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
- 批准号:
1344495 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Cooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
- 批准号:
1308960 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
- 批准号:
1007603 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:
1040036 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似海外基金
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
- 批准号:
RGPIN-2017-05047 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
- 批准号:
RGPIN-2017-05047 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Non/semiparametric methods for nonlinear/hazards/cencored regression; Nonparametric monotone empirical Bayes; Non/semiparametric seemingly unrelated regression
用于非线性/风险/中心回归的非/半参数方法;
- 批准号:
RGPIN-2017-05047 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual