Adaptive Regression via Basis Selection from Multiple Libraries
通过从多个库选择基础的自适应回归
基本信息
- 批准号:0706886
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to develop more adaptive non-parametric and semi-parametric methods. The approach is to use multiple libraries and allow fusion among them in the selection process. Data-driven estimates of model complexities will be used to correct bias incurred by adaptive model selection. New model selection criteria will be developed to allow basis functions in different libraries to compete on an equal footing. The general covariance penalty will be developed for extended linear models. Since model complexities are estimated and incorporated at each step of the selection procedure, the proposed methods are fully adaptive in the sense that they dynamically adjust their strategy to take into account the behavior of the function to be estimated. The proposed procedures are general in the sense that they can be applied to combinations of any generic libraries which may include Fourier, truncated polynomial, spline and wavelet bases. The methods also combine variable selection with basis selection in a semi-parametric model.Increasingly complex data sets are being collected in many fields. Powerful statistical methods are essential for the extraction of as much information as possible from the data. Advances in computational power have afforded modelers unprecedented opportunities to exploit possible hidden structure using non-parametric and semi-parametric modeling techniques. The novel methodologies developed in this proposal constitute advances in adaptive non-parametric and semi-parametric modeling procedures. The methods and software are quite general which can be applied to a number of different fields including biological sciences, economics, engineering, geological and environmental sciences, information technology, health and medicine, physical sciences, and social sciences. The proposed activities involve training of graduate students for future researchers in statistics. The P.I. is engaged in several collaborations with investigators in the environmental, medical and social sciences. Some proposed methods will be applied to analyze data from ongoing and future experiments. The procedures will be implemented in R and will be contributed to the Comprehensive R Archive Network.
本研究的目的是发展更具适应性的非参数和半参数方法。方法是使用多个库,并在选择过程中允许它们之间的融合。数据驱动的模型复杂性估计将用于纠正自适应模型选择引起的偏差。我们会制定新的模式选择准则,让不同图书馆的基函数在平等的基础上竞争。一般协方差惩罚将用于扩展线性模型。由于模型复杂性在选择过程的每一步都被估计和纳入,因此所提出的方法在动态调整策略以考虑待估计函数的行为的意义上是完全自适应的。所提出的程序在某种意义上是通用的,它们可以应用于任何通用库的组合,其中可能包括傅立叶,截断多项式,样条和小波基。该方法还将半参数模型中的变量选择与基选择相结合。许多领域正在收集越来越复杂的数据集。强大的统计方法对于从数据中提取尽可能多的信息是必不可少的。计算能力的进步为建模者提供了前所未有的机会,利用非参数和半参数建模技术来开发可能的隐藏结构。本提案中开发的新方法构成了自适应非参数和半参数建模程序的进步。这些方法和软件非常通用,可以应用于许多不同的领域,包括生物科学、经济学、工程学、地质和环境科学、信息技术、卫生和医学、物理科学和社会科学。拟议的活动包括为将来的统计研究人员培训研究生。私家侦探与环境、医学和社会科学领域的调查人员进行了若干合作。一些提出的方法将应用于分析正在进行的和未来的实验数据。这些程序将在R中执行,并将提交给综合R档案网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuedong Wang其他文献
Soft Classification, a. k. a. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Ana
软分类,a.
- DOI:
10.1201/9780429492525-10 - 发表时间:
1993 - 期刊:
- 影响因子:0.7
- 作者:
G. Wahba;Chong Gu;Yuedong Wang - 通讯作者:
Yuedong Wang
Mixed-Effects Smoothing Spline ANOVA
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Yuedong Wang - 通讯作者:
Yuedong Wang
Vascular Access Vulnerability in Intensive Hemodialysis: A Significant Achilles' Heel?
强化血液透析中的血管通路脆弱性:一个重要的致命弱点?
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3
- 作者:
T. Cornelis;L. Usvyat;J. Tordoir;Yuedong Wang;Michelle M. Y. Wong;K. Leunissen;F. M. van der Sande;P. Kotanko;J. Kooman - 通讯作者:
J. Kooman
hemodialysis patient cohort Impact of fl uid status and in fl ammation and their interaction on survival : a study in an international
血液透析患者队列液体状态和炎症的影响及其对生存的相互作用:一项国际研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Marijke J. E. Dekker;D. Marcelli;B. Canaud;Paola Carioni;Yuedong Wang;A. Grassmann;C. Konings;P. Kotanko;K. Leunissen;N. Levin;F. Sande;Xiaoling Ye;Vaibhav Maheshwari;L. Usvyat;J. Kooman - 通讯作者:
J. Kooman
Laterality and asymmetry of endometriotic lesions.
子宫内膜异位病变的偏侧性和不对称性。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:6.7
- 作者:
Sun;Yuedong Wang;Xi;D. Olive - 通讯作者:
D. Olive
Yuedong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuedong Wang', 18)}}的其他基金
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507620 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Exploring Signal Detection via Multitaper Transfer Function Estimates: Extension to a Generalized Framework of Time Series Regression Models and Applications
通过多锥度传递函数估计探索信号检测:扩展到时间序列回归模型和应用的通用框架
- 批准号:
570341-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
High Predictive Performance Models via Semi-Parametric Survival Regression
通过半参数生存回归的高预测性能模型
- 批准号:
DP220102249 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
Leveraging Observability Via Tracing For Software Regression Detection and Root Cause Analysis
通过跟踪利用可观察性进行软件回归检测和根本原因分析
- 批准号:
572127-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Analyzing Dependent Extremes via Joint Quantile Regression
通过联合分位数回归分析相关极值
- 批准号:
2014861 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical inference for nonstandard data via time varying processes, robust regression and directional statistics
通过时变过程、稳健回归和方向统计对非标准数据进行统计推断
- 批准号:
20K13467 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
New Approaches for Censored Quantile Regression Models via Data Augmentation
通过数据增强的截尾分位数回归模型的新方法
- 批准号:
1811768 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Building a robust Data Science toolset via Computational Rough Paths: Localised Regression based on the Signature Method
通过计算粗糙路径构建强大的数据科学工具集:基于签名方法的局部回归
- 批准号:
2100087 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
CIF: Small: Fast Rate-Efficient Codes for Data Compression and Transmission via Sparse Regression
CIF:小型:通过稀疏回归进行数据压缩和传输的快速高效代码
- 批准号:
1217023 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Penalization Methods for Screening, Variable Selection and Dimension Reduction in High-Dimensional Regression via Multiple Index Models
合作研究:通过多指标模型进行高维回归筛选、变量选择和降维的惩罚方法
- 批准号:
1107047 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Penalization Methods for Screening, Variable Selection and Dimension Reduction in High-dimensional Regression via Multiple Index Models
合作研究:通过多指标模型进行高维回归筛选、变量选择和降维的惩罚方法
- 批准号:
1107029 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant