From Information Scaling to Regimes of Statistical Models of Natural Image Patterns

从信息尺度到自然图像模式统计模型的体系

基本信息

  • 批准号:
    0707055
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

The focus of the proposed research is to develop statistical models for image patterns of natural scenes, guided by the study of information scaling, i.e., the change of statistical properties of the image data over the scaling process. The proposed research will integrate two streams of statistical and mathematical theories in image modeling andrepresentation: (1) spatial statistical models such as Markov random fields and Gibbs distributions originated from statistical physics; and (2) representation and coding theories including wavelets and sparse coding originated from harmonic analysis. At present the two areas are studied almost in mutual isolation, with random field models working (better) in stochastic (high-entropy) regime while the coding theories working (better) in structured (low-entropy) regime. The PIs identify a fundamental concept, the image entropy rate, whose scaling behavior connects the two regimes, namely the high-entropy regime of texture patterns and low-entropy regime of geometric patterns. More important, the connection reveals a most crucial regime in between, that is, the mid-entropy regime of object patterns. The PIs propose to integrate the three regimes within a unified theoretical framework, and this integration will lead to powerful models and algorithms for learning and recognition of natural image patterns. The issue of scale and modeling is important in many scientific areas. As a biological application, the proposed research also includes modeling and analysis of 1D ChIP-chip data, based on the work done by the PI and collaborators. ChIP-chip is a technology for isolation and identification of genomic sites occupied by specific DNA binding proteins in living cells. This technology is playing an important role in studying gene regulation. The proposed work will strengthen existing methods for analyzing such data.Images of daily environments contain a bewildering variety of patterns and objects, such as trees, foliage, grass, rivers, houses, cars, human figures, faces, dogs, etc. The images are large arrays of numbers. In order to teach computers to automatically learn these patterns and recognize them from such image data, it is crucial to understand the mathematical and statistical properties of natural images and to develop simple but general statistical models as well as efficient computational algorithms for representing and recognizing these patterns. The goal of the proposed research is to study the information contents of natural images and to develop such models and algorithms within a unified framework. The proposed research will make useful contributions to both statistics and computer vision. The goal of the latter is to teach computers to see as accurately and effortlessly as human beings do.
该研究的重点是在信息尺度研究的指导下,建立自然场景图像模式的统计模型,即图像数据在尺度过程中的统计特性的变化。该研究将在图像建模和表示中融合两种统计和数学理论:(1)源于统计物理的马尔可夫随机场和吉布斯分布等空间统计模型;(2)源于调和分析的表示和编码理论,包括小波和稀疏编码。目前,这两个领域的研究几乎是相互孤立的,随机场模型在随机(高熵)机制下工作得更好,而编码理论在结构化(低熵)机制下工作得更好。PI定义了一个基本的概念,即图像的熵率,它的缩放行为将两个区域联系在一起,即纹理模式的高熵区域和几何模式的低熵区域。更重要的是,这种联系揭示了介于两者之间的一个最关键的制度,即对象模式的中熵制度。PI提出在一个统一的理论框架内集成这三种机制,这种集成将产生用于自然图像模式学习和识别的强大模型和算法。规模和建模问题在许多科学领域都很重要。作为生物学应用,建议的研究还包括基于PI和合作者所做的工作的1D芯片数据的建模和分析。CHIP-CHIP是一种分离和鉴定活细胞中特定DNA结合蛋白所占据的基因组位置的技术。这项技术在研究基因调控方面发挥着重要作用。这项拟议的工作将加强现有的分析此类数据的方法。日常环境的图像包含令人眼花缭乱的各种模式和对象,如树木、树叶、草、河流、房屋、汽车、人物、人脸、狗等。图像是大量数字。为了教会计算机自动学习这些模式并从这些图像数据中识别它们,理解自然图像的数学和统计特性并开发简单但通用的统计模型以及表示和识别这些模式的高效计算算法是至关重要的。该研究的目标是研究自然图像的信息内容,并在统一的框架内开发这样的模型和算法。拟议的研究将对统计学和计算机视觉做出有益的贡献。后者的目标是教计算机像人类一样准确和毫不费力地看东西。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingnian Wu其他文献

Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo
通过高效马尔可夫链蒙特卡罗探索纹理集成
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song;X. Liu;Yingnian Wu
  • 通讯作者:
    Yingnian Wu
GACSNet: A Lightweight Network for the Noninvasive Blood Glucose Detection
GACSNet:用于无创血糖检测的轻量级网络
  • DOI:
    10.1080/08839514.2022.2081898
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Rui Yang;Yingnian Wu;Xiaolong Liu;Wenbai Chen
  • 通讯作者:
    Wenbai Chen
Association of gender and genetic ancestry with frequency of methamphetamine use among methamphetamine-dependent Hispanic and non-Hispanic Whites
  • DOI:
    10.1016/j.drugalcdep.2015.07.1173
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keith Heinzerling;Levon Demirdjian;Marisa Briones;Aimee-Noelle Swanson;Yingnian Wu;Steven Shoptaw
  • 通讯作者:
    Steven Shoptaw
Mouse simulation in human-machine interface using kinect and 3 gear systems
使用 kinect 和 3 齿轮系统进行人机界面中的鼠标模拟
  • DOI:
    10.1142/s1793962314500159
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingnian Wu;Guojun Yang;Lin Zhang
  • 通讯作者:
    Lin Zhang
Sequential Decision Learning Models with Balloon Analogy Risk Task
具有气球类比风险任务的顺序决策学习模型
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Nie;Hongjing Lu;Yingnian Wu;Song
  • 通讯作者:
    Song

Yingnian Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingnian Wu', 18)}}的其他基金

Generative Modeling with Short Run Computing
使用短期计算的生成建模
  • 批准号:
    2015577
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Learning Compositional Sparse Coding Models for Natural Images
学习自然图像的组合稀疏编码模型
  • 批准号:
    1310391
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Statistical Modeling and Learning in Vision
视觉中的统计建模和学习
  • 批准号:
    1007889
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Scaling a Digital Treasure Hunt Game
扩展数字寻宝游戏
  • 批准号:
    ES/Y01104X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Scaling-Up plant based Nanocarriers for BIOpharmaceuticals (SUNBIO)
用于生物制药的植物纳米载体的放大(SUNBIO)
  • 批准号:
    EP/Z53304X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Place-based approaches to sustainable food supply chains: scaling socio-technical innovations as enablers for enhancing public sector food procurement
基于地方的可持续食品供应链方法:扩大社会技术创新作为加强公共部门食品采购的推动力
  • 批准号:
    ES/Z502807/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Beyond experiments: scaling transformative, sustainable business models in the UK
超越实验:在英国扩展变革性、可持续的商业模式
  • 批准号:
    MR/X035786/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Study on mitigation of gypsum scaling during membrane distillation operation
膜蒸馏运行过程中石膏结垢缓解研究
  • 批准号:
    24K17543
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Oxygen vacancy engineering on indium oxide vertical FETs for 3D power scaling
用于 3D 功率缩放的氧化铟垂直 FET 上的氧空位工程
  • 批准号:
    24K17328
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了