Statistical Modeling and Learning in Vision
视觉中的统计建模和学习
基本信息
- 批准号:1007889
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Finding statistical models that capture the regularities and variabilities of the bewildering varieties of visual patterns in natural scenes is at the heart of understanding the mystery of vision. Continuing the pattern-theoretical approach pioneered by Grenander and advocated by Mumford, and building on the active basis model that the PIs have recently developed, the PIs propose research projects to further develop statistical models as well as associated learning and inference algorithms for vision. The active basis model is a mathematical representation of deformable templates of object patterns. Each template is a sparse composition of selected Gabor wavelet elements that are allowed to perturb their locations and orientations. The template can be learned from training images by a shared sketch algorithm. The learned template can then be used to recognize objects from testing images using a cortex-like architecture of sum-max maps. The proposed research develops hierarchical compositional models with active basis models as building blocks or part-templates. The proposed research studies unsupervised learning of dictionaries of active basis templates from natural images or images of objects from multiple categories and viewpoints. The proposed research also studies a shape script model where the part-templates are designed elementary geometric shapes that are represented by the active basis models. Moreover, the proposed research compares generative and discriminative approaches to learning, using active basis model as an example of generative model. In addition, the proposed research extends the active basis model by coupling wavelet sparse coding for shape patterns and Markov random fields for texture patterns.Biological visual cortex can learn and recognize huge number of visual patterns in its environment effortlessly. One may consider the visual cortex as an extremely sophisticated statistical model equipped with extremely efficient and robust learning and inference algorithms. What this model looks like and how it learns from its visual environment is still a deep mystery. The proposed research has the potential to contribute to advancing our understanding of this issue. It also leads to concrete models and algorithms that can be used for learning and recognizing a wide variety of object patterns.
寻找能够捕捉自然场景中各种令人眼花缭乱的视觉模式的规律性和变化性的统计模型是理解视觉之谜的核心。继续由 Grenander 开创并由 Mumford 倡导的模式理论方法,并以 PI 最近开发的主动基础模型为基础,PI 提出了研究项目,以进一步开发统计模型以及相关的视觉学习和推理算法。主动基础模型是对象图案的可变形模板的数学表示。每个模板都是选定的 Gabor 小波元素的稀疏组合,这些元素可以扰乱其位置和方向。可以通过共享草图算法从训练图像中学习模板。然后,学习的模板可用于使用最大和图的类皮层架构来识别测试图像中的对象。拟议的研究开发了分层组合模型,以主动基础模型作为构建块或部分模板。拟议的研究研究了来自多个类别和观点的自然图像或物体图像的主动基础模板词典的无监督学习。拟议的研究还研究了形状脚本模型,其中零件模板被设计为由活动基础模型表示的基本几何形状。此外,所提出的研究比较了生成式和判别式学习方法,并使用主动基础模型作为生成模型的示例。此外,该研究通过耦合形状模式的小波稀疏编码和纹理模式的马尔可夫随机场来扩展主动基础模型。生物视觉皮层可以毫不费力地学习和识别其环境中的大量视觉模式。人们可能会认为视觉皮层是一种极其复杂的统计模型,配备了极其高效和强大的学习和推理算法。这个模型是什么样子以及它如何从视觉环境中学习仍然是一个很深的谜团。拟议的研究有可能有助于增进我们对这个问题的理解。它还产生了可用于学习和识别各种对象模式的具体模型和算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingnian Wu其他文献
Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo
通过高效马尔可夫链蒙特卡罗探索纹理集成
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Song;X. Liu;Yingnian Wu - 通讯作者:
Yingnian Wu
GACSNet: A Lightweight Network for the Noninvasive Blood Glucose Detection
GACSNet:用于无创血糖检测的轻量级网络
- DOI:
10.1080/08839514.2022.2081898 - 发表时间:
2022 - 期刊:
- 影响因子:2.8
- 作者:
Rui Yang;Yingnian Wu;Xiaolong Liu;Wenbai Chen - 通讯作者:
Wenbai Chen
Association of gender and genetic ancestry with frequency of methamphetamine use among methamphetamine-dependent Hispanic and non-Hispanic Whites
- DOI:
10.1016/j.drugalcdep.2015.07.1173 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:
- 作者:
Keith Heinzerling;Levon Demirdjian;Marisa Briones;Aimee-Noelle Swanson;Yingnian Wu;Steven Shoptaw - 通讯作者:
Steven Shoptaw
Mouse simulation in human-machine interface using kinect and 3 gear systems
使用 kinect 和 3 齿轮系统进行人机界面中的鼠标模拟
- DOI:
10.1142/s1793962314500159 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yingnian Wu;Guojun Yang;Lin Zhang - 通讯作者:
Lin Zhang
Sequential Decision Learning Models with Balloon Analogy Risk Task
具有气球类比风险任务的顺序决策学习模型
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Lin Nie;Hongjing Lu;Yingnian Wu;Song - 通讯作者:
Song
Yingnian Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingnian Wu', 18)}}的其他基金
Generative Modeling with Short Run Computing
使用短期计算的生成建模
- 批准号:
2015577 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Learning Compositional Sparse Coding Models for Natural Images
学习自然图像的组合稀疏编码模型
- 批准号:
1310391 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
From Information Scaling to Regimes of Statistical Models of Natural Image Patterns
从信息尺度到自然图像模式统计模型的体系
- 批准号:
0707055 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Classification of Ankle Osteoarthritis Severity from Weightbearing Computed Tomography Using Statistical Shape Modeling and Machine Learning
使用统计形状建模和机器学习根据负重计算机断层扫描对踝骨关节炎严重程度进行分类
- 批准号:
10525301 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Classification of Ankle Osteoarthritis Severity from Weightbearing Computed Tomography Using Statistical Shape Modeling and Machine Learning
使用统计形状建模和机器学习根据负重计算机断层扫描对踝骨关节炎严重程度进行分类
- 批准号:
10669281 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Establishment of a method for monitoring wildlife populations: Collaboration of camera trapping, deep learning, and statistical modeling
建立野生动物种群监测方法:相机捕捉、深度学习和统计模型的协作
- 批准号:
21H03653 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
- 批准号:
10688000 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Fusion of Deep Learning and Statistical Modeling for Image Transformation Methods for Natural Event Forecasting
深度学习与统计建模的融合,用于自然事件预测的图像转换方法
- 批准号:
20K11863 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
- 批准号:
10263932 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual