Generative Modeling with Short Run Computing

使用短期计算的生成建模

基本信息

  • 批准号:
    2015577
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

In our daily lives, we constantly receive a large amount of sensory data in the form of images, texts, and speech, yet we can effortlessly make sense of the data by learning, recognizing, and understanding the patterns and meanings in the data. How this is done by the brain is still largely a mystery, and this is a central problem in machine learning and artificial intelligence, which has a vast scope of applications and is transforming our lives. One way to make sense of sensory data is to construct models to generate them, by assuming that the data are generated by some relatively simple hidden factors or causes. Such models are called generative models. To make sense of the data is to infer the hidden causes that generate the input data, and this can be accomplished by short-run computing dynamics. The main goal of this project is to develop such generative models and the associated short-run computing dynamics. The project has the potential to lead to new learning techniques that can be useful in applications such as computer vision. The PI will also train graduate students supported by this grant and further enhance the graduate and undergraduate courses taught by the PI. Generative models unify supervised, unsupervised, and semi-supervised learning in a principled likelihood-based framework. While supervised learning has met tremendous successes in recent years, unsupervised and semi-supervised learning remains a challenge. The bottleneck for likelihood-based learning of generative models is the intractable computation of expectations which usually requires expensive Markov chain Monte Carlo (MCMC) sampling, whose convergence can be problematic. The main motivation of the research is to get around this bottleneck. The following are specific aims of the proposed research: (1) Variational optimization of short-run MCMC dynamics for the sampling computations in likelihood-based learning of generative models, by combining the advantages of MCMC and variational inference. (2) Developing biologically plausible generative models with multiple layers of hidden variables, and the associated short-run inference and synthesis dynamics that can account for feedbacks and inhibitions between hidden variables.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们的日常生活中,我们不断收到大量图像、文本和语音形式的感官数据,但我们可以通过学习、识别和理解数据中的模式和含义,轻松地理解这些数据。大脑是如何做到这一点在很大程度上仍然是一个谜,这是机器学习和人工智能的核心问题,它具有广泛的应用范围,正在改变我们的生活。理解感官数据的一种方法是构建模型来生成它们,假设数据是由一些相对简单的隐藏因素或原因生成的。这样的模型称为生成模型。理解数据就是推断生成输入数据的隐藏原因,这可以通过短期计算动态来完成。该项目的主要目标是开发此类生成模型以及相关的短期计算动态。该项目有潜力带来新的学习技术,可用于计算机视觉等应用。 PI还将在这笔资助的支持下培养研究生,并进一步加强PI教授的研究生和本科生课程。 生成模型将监督、无监督和半监督学习统一在一个原则性的基于可能性的框架中。尽管监督学习近年来取得了巨大成功,但无监督和半监督学习仍然是一个挑战。基于似然的生成模型学习的瓶颈是难以处理的期望计算,这通常需要昂贵的马尔可夫链蒙特卡罗(MCMC)采样,其收敛可能存在问题。这项研究的主要动机是为了绕过这个瓶颈。本研究的具体目标如下:(1)结合 MCMC 和变分推理的优点,对生成模型的基于似然学习中的采样计算进行短期 MCMC 动力学的变分优化。 (2) 开发具有多层隐藏变量的生物学上合理的生成模型,以及相关的短期推理和综合动态,可以解释隐藏变量之间的反馈和抑制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecule Design by Latent Space Energy-Based Modeling and Gradual Distribution Shifting
  • DOI:
    10.48550/arxiv.2306.14902
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deqian Kong;Bo Pang;Tian Han;Y. Wu
  • 通讯作者:
    Deqian Kong;Bo Pang;Tian Han;Y. Wu
Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering
Learning Joint Latent Space EBM Prior Model for Multi-layer Generator
Latent Diffusion Energy-Based Model for Interpretable Text Modeling
  • DOI:
    10.48550/arxiv.2206.05895
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peiyu Yu;Sirui Xie;Xiaojian Ma;Baoxiong Jia;Bo Pang;Ruigi Gao;Yixin Zhu;Song-Chun Zhu;Y. Wu
  • 通讯作者:
    Peiyu Yu;Sirui Xie;Xiaojian Ma;Baoxiong Jia;Bo Pang;Ruigi Gao;Yixin Zhu;Song-Chun Zhu;Y. Wu
Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and Classification
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingnian Wu其他文献

Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo
通过高效马尔可夫链蒙特卡罗探索纹理集成
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song;X. Liu;Yingnian Wu
  • 通讯作者:
    Yingnian Wu
GACSNet: A Lightweight Network for the Noninvasive Blood Glucose Detection
GACSNet:用于无创血糖检测的轻量级网络
  • DOI:
    10.1080/08839514.2022.2081898
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Rui Yang;Yingnian Wu;Xiaolong Liu;Wenbai Chen
  • 通讯作者:
    Wenbai Chen
Association of gender and genetic ancestry with frequency of methamphetamine use among methamphetamine-dependent Hispanic and non-Hispanic Whites
  • DOI:
    10.1016/j.drugalcdep.2015.07.1173
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keith Heinzerling;Levon Demirdjian;Marisa Briones;Aimee-Noelle Swanson;Yingnian Wu;Steven Shoptaw
  • 通讯作者:
    Steven Shoptaw
Mouse simulation in human-machine interface using kinect and 3 gear systems
使用 kinect 和 3 齿轮系统进行人机界面中的鼠标模拟
  • DOI:
    10.1142/s1793962314500159
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingnian Wu;Guojun Yang;Lin Zhang
  • 通讯作者:
    Lin Zhang
Sequential Decision Learning Models with Balloon Analogy Risk Task
具有气球类比风险任务的顺序决策学习模型
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Nie;Hongjing Lu;Yingnian Wu;Song
  • 通讯作者:
    Song

Yingnian Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingnian Wu', 18)}}的其他基金

Learning Compositional Sparse Coding Models for Natural Images
学习自然图像的组合稀疏编码模型
  • 批准号:
    1310391
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Statistical Modeling and Learning in Vision
视觉中的统计建模和学习
  • 批准号:
    1007889
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
From Information Scaling to Regimes of Statistical Models of Natural Image Patterns
从信息尺度到自然图像模式统计模型的体系
  • 批准号:
    0707055
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

EAR-PF: Short fuses: investigating recent phreatic eruptions at Whakaari, New Zealand, through poroelastic modeling
EAR-PF:短熔丝:通过多孔弹性模型调查新西兰法卡里最近的潜水喷发
  • 批准号:
    2204527
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship Award
Excellence in Research: Experiment Efficient Modeling Method of Dynamic Systems Based on Short-Term Dependency and Non-Recurrent Neural Networks
卓越研究:基于短期依赖和非循环神经网络的动态系统实验高效建模方法
  • 批准号:
    2100956
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
High Fidelity Fluid-Kinetic Hybrid Modeling of Intense, Short Pulse Laser Plasma Interactions
强短脉冲激光等离子体相互作用的高保真流体动力学混合建模
  • 批准号:
    2108788
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Modeling Creep of Short Fiber Reinforced Concrete
短纤维混凝土的徐变建模
  • 批准号:
    422068083
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Fellowships
Modeling the transport demand of same day visitors, short vacationers and vacationers in large cities
对大城市的当日游客、短期度假者和度假者的交通需求进行建模
  • 批准号:
    409499825
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Numerical modeling of the central engine of short gamma-ray bursts
短伽马射线暴中央引擎的数值模拟
  • 批准号:
    18H01213
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mapping, modeling and manipulating the interactions of protein domains that bind short linear motifs
映射、建模和操纵结合短线性基序的蛋白质结构域的相互作用
  • 批准号:
    9575778
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
Mapping, modeling and manipulating the interactions of protein domains that bind short linear motifs
映射、建模和操纵结合短线性基序的蛋白质结构域的相互作用
  • 批准号:
    10242750
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
Analyzing and modeling of short-time dynamic yarn handling processes through the example of high-performance warp knitting
以高性能经编为例对短时动态纱线处理过程进行分析和建模
  • 批准号:
    394705170
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Multiscale Modeling of Wind Turbine Wake Effects on Short-term Wind Power Forecasting and Wind Farm Layout Planning
风力发电机尾流效应对短期风电预测和风电场布局规划的多尺度建模
  • 批准号:
    RGPIN-2016-04015
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了