RI: High Performance Algorithms for Probabilistic and Deterministic Graphical Models

RI:概率性和确定性图形模型的高性能算法

基本信息

  • 批准号:
    0713118
  • 负责人:
  • 金额:
    $ 44.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Proposal 0713118"RI: High Performance Algorithms for Probablistic and Deterministic graphical ModelsPI: Rina DechterUniversity of California--IrvineABSTRACTThe goal of this project is to develop powerful algorithms that can help computer programs make sophisticated decisions when faced with real-life problems. The project's novelty is its specific focus on automated reasoning where the relevant information is a combination of certain (deterministic) and uncertain (probabilistic) information. The need to accommodate both types of information is motivated by many real world problems such as scheduling of operating rooms and the diagnosing the nature of a disease, where situation assessment, planning or decision-making often involve taking into consideration both hard constraints and probabilistic information. A unique aspect of the project is that its algorithms will be founded upon a single theoretical framework--AND/OR search, developed by the investigator--which is driven by the graphical representation of the problems and often results in exponentially reduced complexities. The guiding principle behind the algorithms is the exploitation of useful structural features of a given problem instance, such as decomposability, sub-problem equivalence, and sub-problem irrelevance. The work proposed here promises to enhance problem-solving knowledge not just in the field of artificial intelligence, but also in the scientific community in general. As they are completed, the new algorithms will be posted on a publicly available Web site.
提案 0713118“RI:概率性和确定性图形模型的高性能算法 PI:Rina Dechter 加州大学欧文分校 摘要 该项目的目标是开发强大的算法,可以帮助计算机程序在面对现实生活问题时做出复杂的决策。该项目的新颖性在于它特别关注自动推理,其中相关信息是某些(确定性)和 不确定(概率)信息。容纳这两种类型的信息的需要是由许多现实世界的问题引起的,例如手术室的调度和疾病的性质诊断,其中情况评估、规划或决策通常涉及考虑硬约束和概率信息。该项目的一个独特之处在于,其算法将建立在一个单一的理论框架之上——由研究者开发的 AND/OR 搜索——该框架是由研究人员开发的 通过问题的图形表示,通常会导致复杂性呈指数级降低。算法背后的指导原则是利用给定问题实例的有用结构特征,例如可分解性、子问题等价性和子问题不相关性。这里提出的工作有望增强解决问题的知识,不仅在人工智能领域,而且在整个科学界。当它们完成时, 新算法将发布在公开网站上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rina Dechter其他文献

Causal Inference from an EM-Learned Causal Model
从 EM 学习的因果模型进行因果推断
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna K. Raichev;Jin Tian;Rina Dechter
  • 通讯作者:
    Rina Dechter
Exploring UFO’s
探索UFO
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bobak Pezeshki;Radu Marinescu;Alexander Ihler;Rina Dechter
  • 通讯作者:
    Rina Dechter
Surrogate Bayesian Networks for Approximating Evolutionary Games
用于近似进化博弈的代理贝叶斯网络
Bucket Elimination: a Unifying Framework for Processing Hard and Soft Constraints
  • DOI:
    10.1023/a:1009796922698
  • 发表时间:
    1997-04-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Rina Dechter
  • 通讯作者:
    Rina Dechter
Maintenance scheduling problems as benchmarks for constraint algorithms

Rina Dechter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rina Dechter', 18)}}的其他基金

RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
  • 批准号:
    2008516
  • 财政年份:
    2020
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
RI: Small: Heuristic Search Algorithms for Probabilistic Graphical Models
RI:小:概率图形模型的启发式搜索算法
  • 批准号:
    1526842
  • 财政年份:
    2015
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
RI: Medium: Approximation Algorithms for Probabilistic Graphical Models with Constraints
RI:中:带约束的概率图形模型的近似算法
  • 批准号:
    1065618
  • 财政年份:
    2011
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
WORKSHOP - Heuristics, Probabilities and Causality
研讨会 - 启发式、概率和因果关系
  • 批准号:
    1025552
  • 财政年份:
    2010
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
Strategies for High Performance Graph-Based Reasoning
高性能基于图的推理策略
  • 批准号:
    0412854
  • 财政年份:
    2004
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
Advanced Approximation Methods and Specification Schemes for Automated Reasoning
自动推理的高级逼近方法和规范方案
  • 批准号:
    0086529
  • 财政年份:
    2000
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
Tractable Reasoning
易于推理
  • 批准号:
    9610015
  • 财政年份:
    1997
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
PYI: Characterization of Tractable Sub-Problems in Automated Reasoning
PYI:自动推理中可处理子问题的表征
  • 批准号:
    9157636
  • 财政年份:
    1991
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
  • 批准号:
    2312599
  • 财政年份:
    2023
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Standard Grant
High Performance Graph Algorithms and Data Structures
高性能图算法和数据结构
  • 批准号:
    RGPIN-2022-03207
  • 财政年份:
    2022
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Discovery Grants Program - Individual
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212370
  • 财政年份:
    2022
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
CAREER: Enabling Progressive Data Analytics for High Performance Computing: Algorithms and System Support
职业:实现高性能计算的渐进式数据分析:算法和系统支持
  • 批准号:
    2144403
  • 财政年份:
    2022
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
Design and Analysis of Algorithms for High-Performance Scientific Computing
高性能科学计算算法的设计与分析
  • 批准号:
    RGPIN-2019-05692
  • 财政年份:
    2022
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212371
  • 财政年份:
    2022
  • 资助金额:
    $ 44.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了