Strategies for High Performance Graph-Based Reasoning
高性能基于图的推理策略
基本信息
- 批准号:0412854
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to develop adaptive techniques for high performance graph-based reasoning systems that allow users to control the tradeoffs between computational resources and solution quality. The main thrust of this project is to introduce adaptability and scalability in algorithms for constraint optimization, probabilistic inference, and decision making under uncertainty. The project is structured into subprojects that study: (1) iterative belief propagation for graphical models; (2) hybrids of stochastic local search and inference; (3) search guided by partition-based heuristics; and (4) mixed probabilistic and deterministic (constraint) networks. These subprojects are tied together by the PI's ongoing research on the unifying framework of "parameterized bounded inference" that combines the two paradigms of search and structure-based inference. Endowing graph-based algorithms with increased adaptability and scalability is important not only to progress in AI and computer science but also to application in many domains. An additional goal of this project is to package the developed algorithms in one software reasoning and evaluation shell (REES) to allow uniform empirical evaluation and to facilitate dissemination of the project's results by researchers, educators and application builders.
该项目旨在为高性能基于图的推理系统开发自适应技术,使用户能够控制计算资源和解决方案质量之间的权衡。这个项目的主旨是在约束优化、概率推理和不确定性决策的算法中引入适应性和可扩展性。该项目分为几个子项目,研究:(1)图形模型的迭代置信传播;(2)随机局部搜索和推理的混合;(3)基于分区的搜索指导;(4)混合概率和确定性(约束)网络。这些子项目被PI正在进行的关于“参数化有界推理”统一框架的研究联系在一起,该框架结合了搜索和基于结构的推理两种范式。赋予基于图的算法以更强的适应性和可扩展性不仅对人工智能和计算机科学的进步很重要,而且对许多领域的应用也很重要。该项目的另一个目标是将开发的算法封装在一个软件推理和评估外壳(REES)中,以允许统一的经验评估,并促进研究人员,教育工作者和应用程序构建者传播该项目的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rina Dechter其他文献
Causal Inference from an EM-Learned Causal Model
从 EM 学习的因果模型进行因果推断
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anna K. Raichev;Jin Tian;Rina Dechter - 通讯作者:
Rina Dechter
Exploring UFO’s
探索UFO
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bobak Pezeshki;Radu Marinescu;Alexander Ihler;Rina Dechter - 通讯作者:
Rina Dechter
Surrogate Bayesian Networks for Approximating Evolutionary Games
用于近似进化博弈的代理贝叶斯网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vincent Hsiao;Dana S. Nau;B. Pezeshki;Rina Dechter - 通讯作者:
Rina Dechter
Bucket Elimination: a Unifying Framework for Processing Hard and Soft Constraints
- DOI:
10.1023/a:1009796922698 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Rina Dechter - 通讯作者:
Rina Dechter
Maintenance scheduling problems as benchmarks for constraint algorithms
- DOI:
10.1023/a:1018906911996 - 发表时间:
1999-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Daniel Frost;Rina Dechter - 通讯作者:
Rina Dechter
Rina Dechter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rina Dechter', 18)}}的其他基金
RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
- 批准号:
2008516 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Heuristic Search Algorithms for Probabilistic Graphical Models
RI:小:概率图形模型的启发式搜索算法
- 批准号:
1526842 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Medium: Approximation Algorithms for Probabilistic Graphical Models with Constraints
RI:中:带约束的概率图形模型的近似算法
- 批准号:
1065618 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
WORKSHOP - Heuristics, Probabilities and Causality
研讨会 - 启发式、概率和因果关系
- 批准号:
1025552 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
RI: High Performance Algorithms for Probabilistic and Deterministic Graphical Models
RI:概率性和确定性图形模型的高性能算法
- 批准号:
0713118 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Advanced Approximation Methods and Specification Schemes for Automated Reasoning
自动推理的高级逼近方法和规范方案
- 批准号:
0086529 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
PYI: Characterization of Tractable Sub-Problems in Automated Reasoning
PYI:自动推理中可处理子问题的表征
- 批准号:
9157636 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
High Performance Graph Algorithms and Data Structures
高性能图算法和数据结构
- 批准号:
RGPIN-2022-03207 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Algorithm-Centric High Performance Graph Processing
职业:以算法为中心的高性能图形处理
- 批准号:
2331038 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: Small: High Performance Graph Pattern Mining System and Architecture
SHF:小型:高性能图模式挖掘系统和架构
- 批准号:
2333645 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212371 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
High-performance Computing for Scalable Graph Representation Learning
用于可扩展图表示学习的高性能计算
- 批准号:
546268-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
High performance Big Data Systems for spatial, spatio-temporal and graph data management
用于空间、时空和图形数据管理的高性能大数据系统
- 批准号:
RGPIN-2016-03787 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
I-Corps: Knowledge Graph Embeddings-based Explainable Artificial Intelligence for Enterprise Performance Management
I-Corps:用于企业绩效管理的基于知识图嵌入的可解释人工智能
- 批准号:
2102803 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




