Advanced Approximation Methods and Specification Schemes for Automated Reasoning
自动推理的高级逼近方法和规范方案
基本信息
- 批准号:0086529
- 负责人:
- 金额:$ 41.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-15 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will explore three avenues in reasoning and knowledge representation: development of new approximation methods that incorporate user-adaptive and any-time features; development of hybrid knowledge-bases that combine deterministic information (constraints) and probabilistic information (belief networks), and which are both semantically coherent and computationally effective; and application of hybrid languages and algorithms to temporal reasoning problems in the domains of planning, scheduling, and diagnosis. The outcome of this research will include a system of algorithmic tools which address issues of non-tractability in an innovative and practical manner, and which are applicable to a new knowledge-based framework that allows the expression of both causal and constraint-like information, thus facilitating tasks such as planning, diagnosis and design. Parameterization will allow users to control the algorithms and adjust them to their own domains and resources. The computational tools will support the solution of challenging problems at the frontiers of diverse areas of science and industry such as robotics, planning and scheduling, bioinformatics (linkage analysis and protein secondary structure prediction), and e-commerce (multi-agent combinatorial auctions).
本项目将探索推理和知识表示的三种途径: 开发新的近似方法,结合用户自适应和任何时间的特点; 开发混合知识库,将联合收割机确定性信息(约束)和概率性信息(信念网络)结合起来,并且在语义上连贯一致,在计算上有效; 以及混合语言和算法在规划、调度和诊断领域的时间推理问题中的应用。 这项研究的成果将包括一个系统的算法工具,解决问题的非易处理性的创新和实用的方式,并适用于一个新的知识为基础的框架,允许表达的因果关系和约束样的信息,从而促进任务,如规划,诊断和设计。 参数化将允许用户控制算法,并根据自己的域和资源进行调整。 这些计算工具将支持解决不同科学和工业领域前沿的挑战性问题,如机器人、规划和调度、生物信息学(连锁分析和蛋白质二级结构预测)和电子商务(多代理组合拍卖)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rina Dechter其他文献
Causal Inference from an EM-Learned Causal Model
从 EM 学习的因果模型进行因果推断
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anna K. Raichev;Jin Tian;Rina Dechter - 通讯作者:
Rina Dechter
Exploring UFO’s
探索UFO
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bobak Pezeshki;Radu Marinescu;Alexander Ihler;Rina Dechter - 通讯作者:
Rina Dechter
Surrogate Bayesian Networks for Approximating Evolutionary Games
用于近似进化博弈的代理贝叶斯网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vincent Hsiao;Dana S. Nau;B. Pezeshki;Rina Dechter - 通讯作者:
Rina Dechter
Bucket Elimination: a Unifying Framework for Processing Hard and Soft Constraints
- DOI:
10.1023/a:1009796922698 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Rina Dechter - 通讯作者:
Rina Dechter
Maintenance scheduling problems as benchmarks for constraint algorithms
- DOI:
10.1023/a:1018906911996 - 发表时间:
1999-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Daniel Frost;Rina Dechter - 通讯作者:
Rina Dechter
Rina Dechter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rina Dechter', 18)}}的其他基金
RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
- 批准号:
2008516 - 财政年份:2020
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
RI: Small: Heuristic Search Algorithms for Probabilistic Graphical Models
RI:小:概率图形模型的启发式搜索算法
- 批准号:
1526842 - 财政年份:2015
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
RI: Medium: Approximation Algorithms for Probabilistic Graphical Models with Constraints
RI:中:带约束的概率图形模型的近似算法
- 批准号:
1065618 - 财政年份:2011
- 资助金额:
$ 41.54万 - 项目类别:
Continuing Grant
WORKSHOP - Heuristics, Probabilities and Causality
研讨会 - 启发式、概率和因果关系
- 批准号:
1025552 - 财政年份:2010
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
RI: High Performance Algorithms for Probabilistic and Deterministic Graphical Models
RI:概率性和确定性图形模型的高性能算法
- 批准号:
0713118 - 财政年份:2007
- 资助金额:
$ 41.54万 - 项目类别:
Continuing Grant
Strategies for High Performance Graph-Based Reasoning
高性能基于图的推理策略
- 批准号:
0412854 - 财政年份:2004
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
PYI: Characterization of Tractable Sub-Problems in Automated Reasoning
PYI:自动推理中可处理子问题的表征
- 批准号:
9157636 - 财政年份:1991
- 资助金额:
$ 41.54万 - 项目类别:
Continuing Grant
相似海外基金
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
- 批准号:
2316007 - 财政年份:2023
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 41.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
- 批准号:
RGPIN-2021-03828 - 财政年份:2022
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
- 批准号:
2247713 - 财政年份:2022
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
- 批准号:
RGPIN-2021-03828 - 财政年份:2021
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
- 批准号:
2055364 - 财政年份:2021
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
AF: Small: Online Algorithms and Approximation Methods in Learning
AF:小:学习中的在线算法和近似方法
- 批准号:
2008688 - 财政年份:2020
- 资助金额:
$ 41.54万 - 项目类别:
Standard Grant
General approximation methods for multicriteria optimization problems
多标准优化问题的通用近似方法
- 批准号:
398572517 - 财政年份:2018
- 资助金额:
$ 41.54万 - 项目类别:
Research Grants
Development of approximation methods for cone optimization problems using semidefinite bases
使用半定基开发圆锥优化问题的近似方法
- 批准号:
17K18946 - 财政年份:2017
- 资助金额:
$ 41.54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Applications of moment based density approximation methods in Actuarial Science
基于矩的密度逼近方法在精算学中的应用
- 批准号:
512526-2017 - 财政年份:2017
- 资助金额:
$ 41.54万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




