RI: Medium: Approximation Algorithms for Probabilistic Graphical Models with Constraints
RI:中:带约束的概率图形模型的近似算法
基本信息
- 批准号:1065618
- 负责人:
- 金额:$ 108.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-15 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to create the next generation of approximate inference techniques and algorithms for probabilistic graphical models. Probabilistic graphical models are employed throughout science and engineering to solve difficult problems, including automated reasoning and decision making, computational biology and genetics, computer vision, data mining, and social network analysis. However, these real-world problems are now of such considerable size that most existing techniques are uneven in their performance in that they typically work well on some problems and not others, and often require sets of choices and customizations that must be made with little guidance or automation.This project brings together separate but complementary streams of research to develop new algorithms to manage models containing mixtures of probabilistic and deterministic relations and mixtures of graph-based and context-sensitive relationships. This project aims to advance the state of the art of probabilistic reasoning in the presence of deterministic constraints by developing new approximate inference techniques for graphical models, for instance, by exploiting the rich structure of graphical models that is largely neglected by most sampling techniques. This project aims to create improved frameworks for probabilistic graphical models by improving both sampling and message-passing algorithms for approximate inference and developing hybrid approaches that exploit the advantages of each. The frameworks will be used to provide automated guidance for selecting parameters to optimize the inherent tradeoffs between complexity and accuracy as well as provide meaningful bounds on results and accuracy. This project will use the fruits of its research to improve education, both at the undergraduate and graduate level, for instance by developing a new undergraduate course in graphical models, and by posting course materials online. In addition, the project will post open source code on the web.
该项目的目标是为概率图模型创建下一代近似推理技术和算法。概率图模型在整个科学和工程中用于解决困难的问题,包括自动推理和决策,计算生物学和遗传学,计算机视觉,数据挖掘和社交网络分析。然而,这些现实世界的问题现在规模如此之大,以至于大多数现有技术的性能参差不齐,因为它们通常在某些问题上效果良好,而在其他问题上则不然,并且通常需要一系列的选择和定制,这些选择和定制必须在很少的指导或自动化的情况下进行。该项目汇集了独立但互补的研究流,以开发新的算法来管理包含概率和确定性关系以及基于图和上下文敏感关系的混合。该项目旨在通过开发图形模型的新的近似推理技术,例如,通过利用大多数抽样技术在很大程度上忽略的图形模型的丰富结构,在确定性约束的存在下推进概率推理的艺术水平。该项目旨在通过改进用于近似推理的采样和消息传递算法,并开发利用各自优势的混合方法,为概率图形模型创建改进的框架。这些框架将用于为选择参数提供自动化指导,以优化复杂性和准确性之间的固有权衡,并提供有意义的结果和准确性界限。该项目将利用其研究成果来改善本科和研究生教育,例如通过开发一门新的图形模型本科课程,并通过在线发布课程材料。此外,该项目将在网上发布开源代码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rina Dechter其他文献
Causal Inference from an EM-Learned Causal Model
从 EM 学习的因果模型进行因果推断
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anna K. Raichev;Jin Tian;Rina Dechter - 通讯作者:
Rina Dechter
Exploring UFO’s
探索UFO
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bobak Pezeshki;Radu Marinescu;Alexander Ihler;Rina Dechter - 通讯作者:
Rina Dechter
Surrogate Bayesian Networks for Approximating Evolutionary Games
用于近似进化博弈的代理贝叶斯网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vincent Hsiao;Dana S. Nau;B. Pezeshki;Rina Dechter - 通讯作者:
Rina Dechter
Bucket Elimination: a Unifying Framework for Processing Hard and Soft Constraints
- DOI:
10.1023/a:1009796922698 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Rina Dechter - 通讯作者:
Rina Dechter
Maintenance scheduling problems as benchmarks for constraint algorithms
- DOI:
10.1023/a:1018906911996 - 发表时间:
1999-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Daniel Frost;Rina Dechter - 通讯作者:
Rina Dechter
Rina Dechter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rina Dechter', 18)}}的其他基金
RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
- 批准号:
2008516 - 财政年份:2020
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
RI: Small: Heuristic Search Algorithms for Probabilistic Graphical Models
RI:小:概率图形模型的启发式搜索算法
- 批准号:
1526842 - 财政年份:2015
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
WORKSHOP - Heuristics, Probabilities and Causality
研讨会 - 启发式、概率和因果关系
- 批准号:
1025552 - 财政年份:2010
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
RI: High Performance Algorithms for Probabilistic and Deterministic Graphical Models
RI:概率性和确定性图形模型的高性能算法
- 批准号:
0713118 - 财政年份:2007
- 资助金额:
$ 108.93万 - 项目类别:
Continuing Grant
Strategies for High Performance Graph-Based Reasoning
高性能基于图的推理策略
- 批准号:
0412854 - 财政年份:2004
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
Advanced Approximation Methods and Specification Schemes for Automated Reasoning
自动推理的高级逼近方法和规范方案
- 批准号:
0086529 - 财政年份:2000
- 资助金额:
$ 108.93万 - 项目类别:
Continuing Grant
PYI: Characterization of Tractable Sub-Problems in Automated Reasoning
PYI:自动推理中可处理子问题的表征
- 批准号:
9157636 - 财政年份:1991
- 资助金额:
$ 108.93万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
CNS Core: Medium: Approximation and Randomization in the Programmable Data Plane
CNS 核心:中:可编程数据平面中的近似和随机化
- 批准号:
2107078 - 财政年份:2021
- 资助金额:
$ 108.93万 - 项目类别:
Continuing Grant
RI: Medium: Provable Reinforcement Learning with Function Approximation and Neural Networks
RI:中:使用函数逼近和神经网络的可证明强化学习
- 批准号:
2107304 - 财政年份:2021
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
Collaborative Research: CNS CORE: Medium: A Unified Prefetch Framework for Approximation Tolerant Interactive Applications
协作研究:CNS CORE:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2106197 - 财政年份:2021
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2140552 - 财政年份:2021
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
- 批准号:
2105773 - 财政年份:2021
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Testing in the Era of Approximation
SHF:媒介:协作研究:近似时代的测试
- 批准号:
1704790 - 财政年份:2017
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Testing in the Era of Approximation
SHF:媒介:协作研究:近似时代的测试
- 批准号:
1703637 - 财政年份:2017
- 资助金额:
$ 108.93万 - 项目类别:
Standard Grant














{{item.name}}会员




