Multi-scale, Geometrical Study of Eddy-structure in Turbulence
湍流中涡流结构的多尺度几何研究
基本信息
- 批准号:0714050
- 负责人:
- 金额:$ 20.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his students work to develop a new computational-mathematical framework for the identification and characterization of eddy-like structures in turbulence. The general methodology consists of a multi-scale analysis of a turbulence volume data set followed by the eduction of structures of interest and their geometrical characterization. The multi-scale analysis is performed through the curvelet transform.The eduction of structures is achieved by isocontouring the volume data sets for different scales. The geometrical characterization is based on the probability density functions of shape index and curvedness, in terms of area coverage,associated with each structure. This allows a global characterization of the set of structures as well as the study and comparison of relevant groups of structures contained within this set. The investigator has already developed the basic framework which has been subjected to validation testing based on reproducing the geometrical character of a synthetic ``virtual turbulence''. The work is presently focused on studying the geometrical structure of scalar turbulence obtained from 512^3 direct-numerical simulation in a periodic cube. Further development is in progress to refine and improve this framework at the extraction and classification levels in order to better adapt it to the properties of turbulence data bases. The methodology is also being applied to the 256^3, 512^3 and 1024^3 data sets of the same turbulence image (at three different resolutions) provided by K. Horiuti (Nagoya Japan). Turbulent fields under study include the scalar dissipation and quantities derivable from velocity gradients such as vorticity, invariants of the velocity-gradient tensor, functions of these quantities that identify local, vorticity-dominant regions, and functionals of the pressure. The methodology will also be applied to non-homogeneous turbulent fields such as those obtained from turbulent channel flow. From the time of Leonardo Da Vinci, who crafted detailed images of eddying fluid flow, the to present era of enhanced computer graphics and the visualization of natural phenomena, there has been an ongoing fascination with both characterizing and understanding the natural geometry of turbulent fluid flow.But despite intense study, the structure and morphology of turbulent eddies remains elusive. A better understanding of this structure should both elucidate one of nature's profound mysteries and at the same time provide a firm basis for the development of improved predictive models for turbulent fluid flow for application to many diverse areas of science and engineering ranging from the galactic scale, through solar-system dynamics, star formation and stellar interior dynamics, the solar wind, climate modeling of planet earth, to environmental fluid dynamics and industrial and engineering applications. The present research is motivated by the recent availability of high-fidelity data bases representing very detailed and realistic turbulent flow fields obtained from intensive computer simulation.The investigator and his students combine novel pattern-recognition techniques from the field of computer science with new applied-mathematical methods based on ``multi-scale'' analysis, to study these data. The significance of this work is that it will provide a new methodology for analysing the underlying geometrical structure and content of extremely large, turbulent fluid-flow data fields.The computer codes developed in this research will be made openly available, with documentation through publications in thesis dissertations and in archival journals.This should allow potential users to apply the modeling methodologies developed in this work to large data bases obtained from both numerical-simulation and experiment. Applications beyond fluid flows, to any set of continuous fields, are envisioned.
研究人员和他的学生们致力于开发一种新的计算数学框架,用于识别和表征湍流中的涡状结构。一般的方法包括一个多尺度分析的湍流体积数据集,然后由感兴趣的结构和它们的几何特征的eduction。通过曲波变换进行多尺度分析,对不同尺度的体数据进行等轮廓线处理,实现结构的提取。的几何特征是基于概率密度函数的形状指数和曲率,在面积覆盖,与每个结构。这允许一组结构的全局表征以及研究和比较包含在该组结构中的相关结构组。研究人员已经开发了基本框架,该框架已经在再现合成"虚拟双折射“的几何特征的基础上进行了验证测试。目前的工作主要集中在研究周期立方体中标量湍流的几何结构,这些结构是通过512^3直接数值模拟得到的。进一步的发展正在进行中,以完善和改进这一框架的提取和分类水平,以更好地适应湍流数据库的属性。该方法也被应用于由K. Horiuti(日本名古屋)。研究中的湍流场包括标量耗散和可从速度梯度导出的量,如涡量、速度梯度张量的不变量、这些量的函数(用于识别局部涡量主导区域)和压力泛函。该方法也将被应用到非均匀湍流场,如那些从湍流通道流。从列奥纳多·达芬奇绘制出详细的涡流图像的时代,到现在计算机图形学和自然现象可视化的时代,人们一直对描述和理解湍流流体流动的自然几何形状着迷。但是,尽管进行了大量的研究,湍流涡流的结构和形态仍然难以捉摸。更好地了解这种结构,既可以阐明自然界的一个深奥的奥秘,同时也可以为改进湍流预测模型的发展提供坚实的基础,这些模型可以应用于许多不同的科学和工程领域,从银河系尺度,到太阳系动力学,星星形成和恒星内部动力学,太阳风,地球气候建模,环境流体动力学和工业及工程应用。本研究的动机是最近可用的高保真数据库表示非常详细和现实的湍流fields.The调查员和他的学生联合收割机从计算机科学领域的新模式识别技术结合新的应用数学方法的基础上"多尺度“分析,研究这些数据。这项工作的意义在于,它将为分析超大型湍流流体流数据场的基本几何结构和内容提供一种新的方法。通过论文和档案期刊的出版物提供文档。这将允许潜在用户将本工作中开发的建模方法应用于大型数据库从数值模拟和实验两方面得到。流体流动以外的应用,任何一组连续的领域,设想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dale Pullin其他文献
Dale Pullin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dale Pullin', 18)}}的其他基金
Maximum Entropy Closure of Boltzmann-Equation Moment-Hierarchy
玻尔兹曼方程矩层次的最大熵闭合
- 批准号:
1418903 - 财政年份:2014
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Large-eddy simulation of smooth and rough-wall turbulent boundary-layer flows at arbitrary Reynolds numbers
任意雷诺数下光滑壁和粗糙壁湍流边界层流的大涡模拟
- 批准号:
1235605 - 财政年份:2012
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Multi-scale geometry of Lagrangian and vortex-surface fields in turbulence
湍流中拉格朗日场和涡面场的多尺度几何
- 批准号:
1016111 - 财政年份:2010
- 资助金额:
$ 20.75万 - 项目类别:
Continuing Grant
Multi-scale Predictive Simulation Methods for Turbulent Flow
湍流多尺度预测模拟方法
- 批准号:
0651754 - 财政年份:2007
- 资助金额:
$ 20.75万 - 项目类别:
Continuing Grant
Vortex Tubes, Spirals and the Large-Eddy Simulation of Turbulence
涡管、螺旋和湍流的大涡模拟
- 批准号:
0227881 - 财政年份:2003
- 资助金额:
$ 20.75万 - 项目类别:
Continuing Grant
Stretched-Vortex Subgrid Stress Model and Large-Eddy Simulation of Turbulent Flows
湍流的拉伸涡亚网格应力模型和大涡模拟
- 批准号:
9978551 - 财政年份:1999
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Vortex Models of Turbulence and Large-Eddy Simulation
湍流涡模型和大涡模拟
- 批准号:
9634222 - 财政年份:1996
- 资助金额:
$ 20.75万 - 项目类别:
Continuing Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 20.75万 - 项目类别:
Fellowship
Flok Health: Developing a pocket physiotherapist to deliver personalised healthcare at population scale
Flok Health:开发袖珍物理治疗师以在人口规模上提供个性化医疗保健
- 批准号:
10100082 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Collaborative R&D
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Research Grant
Optimising Nature's pharmacies: plant chemicals and pollinator health at the landscape scale
优化大自然的药房:景观尺度上的植物化学物质和传粉媒介健康
- 批准号:
NE/Y000285/1 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Research Grant
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
- 批准号:
EP/Y002008/1 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Research Grant
SBIR Phase I: Industrial-Scale Technology for Drug Development in Mature Human Fat Cells
SBIR 第一阶段:成熟人类脂肪细胞药物开发的工业规模技术
- 批准号:
2322443 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant