Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
基本信息
- 批准号:22KF0205
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-03-08 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
研究実施計画の実行のため、研究代表者(受入研究者)、研究分担者(外国人特別研究員)、研究代表者・研究分担者所属部局の研究員Benjamin Collas氏の3名によるセミナーと研究分担者、Collas氏の2名によるセミナーを交互に定期的に行い、研究の目的(A)準安定還元を与える体の数論の研究と(B)織田の問題と対称性を持つ曲線の研究に関する研究打合せ・研究討論を重点的に行った。当初の研究実施計画では、本年度は目的(A)についての研究を主に行う予定であったが、実際には目的(B)に関する計画が爆発的に進展したため、研究分担者とCollas氏が中心となって、こちらの研究を主に行った。具体的な研究実績としては、まず、目標(O.2.a)についてはほぼ達成することができた:非負整数g,rと巡回群Gに対し、M_{g,r}(G)を、(g,r)型双曲的曲線のモジュライ空間M_{g,r}の中でG対称性を持つ曲線のなす部分空間とする。M_{g,r}(G)の各既約成分に対し、曲線のG商を考えることにより、別のM_{g',r'}への射が生じる。この射を用いてM_{g,r}とM_{g',r'}の普遍モノドロミー表現や伊原塔を比較し、この文脈で織田の問題を定式化して解決する。また、目標(O.2.b)の前半部分についても達成することができた:伊原の問題「山=天」の相対版をM_{g,r}(G)の文脈で定式化する。現在は、以上の結果をまとめた論文(研究分担者とCollas氏の共著論文となる予定)の第一稿が完成し、(研究代表者も含めた3名で)推敲をしている最中で、並行して、目的(A)の研究の準備を開始している。
The research representative (enrolled researcher), the research representative (the participating researcher), the research contributor (the foreigner special researcher), the representative research contributor, the researcher of the department to which the research representative belongs, Benjamin Collas, the researcher of the department where the representative research distributor belongs, and the two participants of the Collas program regularly interact with each other. Objective (A) to study the relationship between stability reduction and body number theory. (B) the symmetry of the field problem is supported by the key points of the research discussion. At the beginning of the study, the project was conducted in the first place, and in the current year (A). The main purpose of the study is to determine the development of the project, the purpose of the study (B), the development of the project, the research contributor, the Collas center, and the research partner. In this paper, the specific research results are as follows: the non-integer g-ray circuit group G, M _ {g _ r} (G), M _ {g _ r} (G), (g _ r), (g _ r), (g), (g) and (g). M _ {gforme r} (G) is different from each other. The components of M _ {gr _ r} (G) are different from each other. In general, you can find a solution to the problem of the tower of Ibara by using the formula M _ {gthagol r}, M _ {greco r}, M _ {greco r}, and so on. In the first half of the book (O.2.b), the first half of the book is divided into two parts: the Ihara question "Mountain = Heaven", the version of the book, M{ grecoery r} (G), the text format. Now, the results of the above review (co-authored by the research contributor Collas), the completion of the first draft, the completion of the first draft (including 3 representatives of the research), and the purpose (A) of the study is to prepare for the beginning of the study.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fields of definition of endomorphisms and abelian subvarieties.
自同态和阿贝尔亚变体的定义领域。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Severin Philip;Severin Philip;Severin Philip;Severin Philip;Severin Philip
- 通讯作者:Severin Philip
Groupes de monodromie finie et varietes abeliennes CM
单一品种和品种品种 CM
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Severin Philip;Severin Philip;Severin Philip;Severin Philip
- 通讯作者:Severin Philip
Varietes abeliennes CM et grosse monodromie finie sauvage
CM 和大单峰细小野兔品种
- DOI:10.1016/j.jnt.2022.01.007
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Severin Philip
- 通讯作者:Severin Philip
Fields of definition of abelian subvarieties
阿贝尔亚变体的定义域
- DOI:10.5802/jtnb.1214
- 发表时间:2022
- 期刊:
- 影响因子:0.4
- 作者:Severin Philip;Severin Philip
- 通讯作者:Severin Philip
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
玉川 安騎男其他文献
Spherical designs attached to extremal lattices and some related problems of modular forms
极值格子的球形设计及模形式的一些相关问题
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之;Michio Ozeki;小木曽啓示;Masaaki Harada;小木曽啓示;Eiichi Bannai - 通讯作者:
Eiichi Bannai
On non-algebraic hyperkahler manifolds
关于非代数超卡勒流形
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之;Michio Ozeki;小木曽啓示;Masaaki Harada;小木曽啓示 - 通讯作者:
小木曽啓示
Mordell-Weil group of an abelian fibered variety and its application to hyperkahler manifolds
阿贝尔纤维簇的 Mordell-Weil 群及其在超卡勒流形中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之;Michio Ozeki;小木曽啓示;Masaaki Harada;小木曽啓示;Eiichi Bannai;小木曽啓示 - 通讯作者:
小木曽啓示
The algebraic and anabelian geometry of configuration spaces (joint work with Shinichi Mochizuki)
配置空间的代数和阿贝尔几何(与望月新一合作)
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Anna Cadoret;Akio Tamagawa;Akio Tamagawa;Akio Tamagawa;玉川安騎男;玉川安騎男;玉川 安騎男;Akio Tamagawa;Akio Tamagawa;Akio Tamagawa;Akio Tamagawa - 通讯作者:
Akio Tamagawa
Survey on inversion of adjunction
附加语倒置调查
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S.;Mukai;坂内 英一;玉川 安騎男;坂内 英一;川北真之 - 通讯作者:
川北真之
玉川 安騎男的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('玉川 安騎男', 18)}}的其他基金
数論的基本群に関する数論幾何学の高次元化
关于算术基本群的算术几何的高维
- 批准号:
23K20207 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Higher-dimensionalization of arithmetic geometry concerning arithmetic fundamental groups
关于算术基本群的算术几何的高维化
- 批准号:
20H01796 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
モジュラータワー予想とフルヴィッツ空間の幾何
模块化塔猜想与赫尔维茨空间几何
- 批准号:
06F06033 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
正標数代数曲線の被覆に関連する数論幾何学とその応用
算术几何及其与正特征代数曲线覆盖相关的应用
- 批准号:
15740009 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
代数曲線の数論的基本群と逆ガロア問題
代数曲线的算术基本群与伽罗瓦反问题
- 批准号:
13740009 - 财政年份:2001
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
数論的基本群と構成的ガロア理論
算术基本群和构造性伽罗瓦理论
- 批准号:
11740016 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
正標数代数多様体の基本群の数論幾何学的研究
正特征代数簇基本群的算术几何研究
- 批准号:
09740019 - 财政年份:1997
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
有限体、局所体、及び大域体の上に定義された代数多様体とその基本群の数論幾何的研究
有限域、局部域和全局域上定义的代数簇及其基本群的算术几何研究
- 批准号:
08740019 - 财政年份:1996
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
数論的基本群に関する数論幾何学の高次元化
关于算术基本群的算术几何的高维
- 批准号:
23K20207 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
p進的手法による数論幾何学の新展開
使用 p-adic 方法的算术几何的新进展
- 批准号:
24H00015 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
超幾何関数論の数論幾何学的な新展開
超几何函数论算术与几何的新进展
- 批准号:
24K06682 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
代数的サイクルの数論幾何学的研究
代数循环的算术几何研究
- 批准号:
23K20203 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
クリスタル、コホモロジー、基本群、q類似のp進数論幾何学的研究
晶体、上同调、基本群、类q p进数论几何研究
- 批准号:
23K03049 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
非可換化を軸にした数論幾何学の新しい展開
以非交换性为中心的算术几何新进展
- 批准号:
23K17651 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
p進微分方程式の解の対数的増大度を駆使した数論幾何学における新手法
充分利用p进微分方程解的对数增长的算术几何新方法
- 批准号:
22K03227 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
超幾何函数の数論幾何学的理論の発展
超几何函数算术几何理论的发展
- 批准号:
22K03238 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
数論幾何学におけるコホモロジーの研究
算术几何中的上同调研究
- 批准号:
20K14284 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
代数的サイクルの数論幾何学的研究
代数循环的算术几何研究
- 批准号:
20H01791 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)