Electron Spins on Liquid Helium for Quantum Computing
液氦上的电子自旋用于量子计算
基本信息
- 批准号:0726490
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The continuing advance in the performance of conventional computers is approaching some difficult fundamental barriers. Quantum computing is a new model for information processing, which promises performance beyond that possible for any conventional computer, at least for certain problems. However, quantum computers are very difficult to build. They require precise control over the interactions amongst a large group of small quantum systems while preventing them from interacting with anything else in their environment. The magnetic moments (spins) of electrons are promising candidates for small quantum systems since they naturally interact only weakly with their environment. Conventional electronic devices operate by controlling the motion of electrons, and it may be possible to harness this ability to control the interactions between the electrons' spins. However, instead of the thousands or millions of electrons which are used in conventional electronic devices, quantum computers must be engineered to control each individual electron.This research involves controlling electrons floating in a vacuum about10nm above the surface of superfluid liquid helium. It has been predicted that under these conditions the spin coherence will be long much longer than when the electrons are moving in a solid as in conventional electronic devices. Ensemble pulsed electron spin resonance measurements will be conducted to measure the electrons' spin coherence, or at least to put a lower limit on the coherence time. Experimental work has already shown that packets with 100 or fewer electrons can be reliably moved across the surface of the helium. Experiments will be performed to isolate, move, and measure individual electrons on the helium surface. The students working on this project will learn skills to enable them to be productive researchers.
传统计算机性能的不断提高正在接近一些困难的基本障碍。 量子计算是一种新的信息处理模型,它的性能超过了任何传统计算机,至少在某些问题上是如此。 然而,量子计算机很难制造。它们需要精确控制大量小量子系统之间的相互作用,同时防止它们与环境中的任何其他东西相互作用。电子的磁矩(自旋)是小量子系统的有希望的候选者,因为它们与环境的自然相互作用很弱。 传统的电子设备通过控制电子的运动来操作,并且可以利用这种能力来控制电子自旋之间的相互作用。 然而,取代传统电子设备中使用的数千或数百万个电子,量子计算机必须被设计成控制每个电子。这项研究涉及控制漂浮在超流液氦表面上方约10纳米真空中的电子。 据预测,在这些条件下,自旋相干性将比电子在固体中运动时长得多,如在传统的电子器件中。 将进行激发脉冲电子自旋共振测量以测量电子的自旋相干性,或者至少对相干时间施加下限。 实验工作已经表明,具有100个或更少电子的包可以可靠地在氦表面移动。 实验将进行隔离,移动和测量氦表面上的单个电子。 从事该项目的学生将学习技能,使他们成为富有成效的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Lyon其他文献
De novo germline mutation in the Dual Specificity Phosphatase 10 gene accelerates autoimmune diabetes in Non-Obese Diabetic (NOD) mice
双特异性磷酸酶 10 基因的从头种系突变加速非肥胖糖尿病 (NOD) 小鼠的自身免疫糖尿病
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Foray;S. Candon;Sara Hildebrand;C. Marquet;F. Valette;Coralie Pecquet;S. Lemoine;F. Langa;Michael Dumas;Peipei Hu;P. Santamaria;Stephen Lyon;L. Scott;C. Bu;Tao Wang;Darui Xu;E. Moresco;C. Scazzocchio;J. Bach;B. Beutler;L. Chatenoud - 通讯作者:
L. Chatenoud
The Alliance for Cellular Signaling Plasmid Collection
细胞信号质粒收集联盟
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:7
- 作者:
Joelle R. Zavzavadjian;Samuel Couture;W. Park;J. Whalen;Stephen Lyon;Genie Lee;E. Fung;Qingli Mi;Jamie Liu;Estelle A. Wall;Leah A. Santat;K. Dhandapani;C. Kivork;A. Driver;Xiaocui Zhu;Mi;Baljinder S. Randhawa;Elizabeth Gehrig;Heather M. Bryan;M. Verghese;A. Maer;Brian Saunders;Yuhong Ning;S. Subramaniam;T. Meyer;M. Simon;N. O’Rourke;G. Chandy;I. Fraser - 通讯作者:
I. Fraser
Stephen Lyon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Lyon', 18)}}的其他基金
Electron Spin Dynamics on the Surface of Superfluid Helium
超流氦表面的电子自旋动力学
- 批准号:
1506862 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Materials World Network: Spin Entanglement Using Transient Electrons in C and Si-Based Materials
材料世界网络:在碳和硅基材料中使用瞬态电子的自旋纠缠
- 批准号:
1107606 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Physics of Confined Electrons and Electron Spins on Liquid Helium
液氦上的受限电子和电子自旋物理学
- 批准号:
1005476 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Physics and Architecture of Spin-Based Quantum Computing with Electrons on the Surface of Liquid Helium
液氦表面电子的基于自旋的量子计算的物理和架构
- 批准号:
0323472 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Optical Nonlinearities and Electrooptic Effects in Asymmetric Quantum Structures
非对称量子结构中的光学非线性和电光效应
- 批准号:
9509257 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Engineering Research Equipment: High Repetition Rate Laser Pulse Amplifier for Ultrahigh Speed Semiconductor and Optoelectronic Device Research
工程研究设备:用于超高速半导体和光电器件研究的高重复率激光脉冲放大器
- 批准号:
9212447 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Presidential Young Investigator Award: Electronic States and Carrier Relaxation in Heterostructures and Quantum Wells
总统青年研究员奖:异质结构和量子阱中的电子态和载流子弛豫
- 批准号:
8351620 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
多孔超分子离子骨架材料(SPINs):新型有机多孔材料的实用制备及温室气体吸附研究
- 批准号:21772013
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23K26488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of element-specific ultrafast magnetic imaging for controlling spins by laser
开发用于通过激光控制自旋的元素特异性超快磁成像
- 批准号:
23H01108 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthetic biology Pipeline for the Investigation of Novel Spidroins (SPINS)
新型蜘蛛蛋白研究的合成生物学管道 (SPINS)
- 批准号:
EP/X015416/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23H01795 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthetic biology Pipeline for the Investigation of Novel Spidroins (SPINS)
新型蜘蛛蛋白研究的合成生物学管道 (SPINS)
- 批准号:
EP/X015408/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Manipulation of single spins in ferroelectric oxides from first principles
从第一原理操控铁电氧化物中的单自旋
- 批准号:
2223486 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
collinear laser quantum control of nuclear spins
核自旋的共线激光量子控制
- 批准号:
RGPIN-2021-02993 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Silicon Photonics Inertial Navigation Systems (SPINS)
硅光子惯性导航系统 (SPINS)
- 批准号:
2734697 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2742534 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Chemically Engineered Quantum Materials: Encapsulation for Spatially Controlled Spins as a Quantum Sensor
化学工程量子材料:作为量子传感器的空间控制自旋封装
- 批准号:
EP/W027542/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship