Physics of Confined Electrons and Electron Spins on Liquid Helium
液氦上的受限电子和电子自旋物理学
基本信息
- 批准号:1005476
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT****Electrons are a fundamental constituent of all atoms, and it is the tremendous variety of forms their interactions can take that is largely responsible for the wide range of material properties we see in the world around us. This experimental project is aimed at understanding more about the ways in which interactions between electrons manifest themselves. The motion and states of the electrons are governed by quantum mechanics, but under special circumstances classical Newtonian physics provides a good approximation to their behavior. In one set of experiments a small number of electrons will gradually be forced closer and closer together to increase the importance of quantum mechanical effects, and to understand how that affects their interactions. In addition to having a negative electric charge, every electron also acts like an extremely weak bar magnet. Another set of experiments will study how these "magnetic moments" interact as the electrons are brought together. An important aim of this part of the project is to develop a way to measure the orientation of the magnetic moment of a single electron. Demonstrating this capability represents an important step towards constructing a quantum computer that uses the magnetic moments of individual electrons as its bits. This project will support the education of a Ph.D. student, together with the participation of undergraduate researchers, working at the boundary between fundamental physics and its applications to new technological opportunities. These students will learn how to use the most advanced tools of modern nanoscience research, which has proven to be excellent training for careers in both academia and high technology industries.****TECHNICAL ABSTRACT****This individual investigator award supports a project that will use electrons floating on the surface of superfluid helium to study the onset of quantum effects in electron-electron interactions and spin relaxation and decoherence in quantum dot structures. Submicron structures (dots) will be developed to tightly confine electrons on the helium in small clusters, and the energy to successively add electrons will be measured. These experiments will take advantage of recent developments in reliably moving individual electrons across the helium surface to measure electrons outside the dot, rather than within the dot where the sensing structures distort the potentials. The total energy in similar dot structures with two trapped electrons will depend upon their relative spins, with singlet states lying lower than triplets. Measurements of the achievable singlet-triplet splitting will be made, and structures optimized for large splitting. By careful study of the time scales over which particular spin states persist it is expected to be able to determine the electron spin relaxation and decoherence times. The ability to measure single electron spins and their decoherence are key steps on the road to implementing an electron spin quantum computer. This research will be performed by a Ph.D. student and part-time undergraduate students. The students will learn nanofabrication, low-temperature techniques, and high-sensitivity measurements on the experimental end, and about the theory of many-body quantum systems and quantum information. These skills, requiring resourcefulness and attention to detail have proven themselves to be excellent training for scientific careers in academia and high technology industries.
* 非技术摘要 * 电子是所有原子的基本组成部分,它们之间的相互作用可以采取各种各样的形式,这在很大程度上是我们在周围世界看到的各种材料属性的主要原因。 该实验项目旨在更多地了解电子之间相互作用的表现方式。 电子的运动和状态由量子力学控制,但在特殊情况下,经典牛顿物理学提供了一个很好的近似。 在一组实验中,少数电子将逐渐被迫使越来越靠近,以增加量子力学效应的重要性,并了解这如何影响它们的相互作用。 除了带负电荷外,每个电子的作用都像极弱的条形磁铁。 另一组实验将研究这些“磁矩”在电子聚集在一起时如何相互作用。 这部分项目的一个重要目标是开发一种测量单个电子磁矩方向的方法。展示这种能力是构建使用单个电子磁矩作为其比特的量子计算机的重要一步。 该项目将支持博士教育。学生,与本科研究人员的参与,在基础物理学和它的应用程序之间的边界工作,以新的技术机会。 这些学生将学习如何使用现代纳米科学研究的最先进的工具,这已被证明是在学术界和高科技行业的职业生涯的优秀培训。技术摘要 * 这个个人研究者奖支持一个项目,该项目将使用漂浮在超流氦表面的电子来研究量子点结构中电子-电子相互作用和自旋弛豫和退相干中量子效应的开始。 将开发亚微米结构(点),以将电子紧紧限制在小团簇中的氦上,并测量连续添加电子的能量。 这些实验将利用最近的发展,可靠地移动单个电子穿过氦表面,以测量点外部的电子,而不是在传感结构扭曲电位的点内。 具有两个被捕获电子的类似点结构的总能量将取决于它们的相对自旋,单重态低于三重态。 将测量可实现的单重态-三重态分裂,并为大分裂优化结构。 通过仔细研究特定自旋态持续存在的时间尺度,预计能够确定电子自旋弛豫和退相干时间。 测量单电子自旋及其退相干的能力是实现电子自旋量子计算机的关键步骤。 这项研究将由一位博士进行。学生和兼职本科生。 学生将学习纳米纤维,低温技术和实验端的高灵敏度测量,以及多体量子系统和量子信息的理论。 这些技能,需要足智多谋和关注细节,已被证明是在学术界和高科技行业的科学职业生涯的优秀培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Lyon其他文献
De novo germline mutation in the Dual Specificity Phosphatase 10 gene accelerates autoimmune diabetes in Non-Obese Diabetic (NOD) mice
双特异性磷酸酶 10 基因的从头种系突变加速非肥胖糖尿病 (NOD) 小鼠的自身免疫糖尿病
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Foray;S. Candon;Sara Hildebrand;C. Marquet;F. Valette;Coralie Pecquet;S. Lemoine;F. Langa;Michael Dumas;Peipei Hu;P. Santamaria;Stephen Lyon;L. Scott;C. Bu;Tao Wang;Darui Xu;E. Moresco;C. Scazzocchio;J. Bach;B. Beutler;L. Chatenoud - 通讯作者:
L. Chatenoud
The Alliance for Cellular Signaling Plasmid Collection
细胞信号质粒收集联盟
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:7
- 作者:
Joelle R. Zavzavadjian;Samuel Couture;W. Park;J. Whalen;Stephen Lyon;Genie Lee;E. Fung;Qingli Mi;Jamie Liu;Estelle A. Wall;Leah A. Santat;K. Dhandapani;C. Kivork;A. Driver;Xiaocui Zhu;Mi;Baljinder S. Randhawa;Elizabeth Gehrig;Heather M. Bryan;M. Verghese;A. Maer;Brian Saunders;Yuhong Ning;S. Subramaniam;T. Meyer;M. Simon;N. O’Rourke;G. Chandy;I. Fraser - 通讯作者:
I. Fraser
Stephen Lyon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Lyon', 18)}}的其他基金
Electron Spin Dynamics on the Surface of Superfluid Helium
超流氦表面的电子自旋动力学
- 批准号:
1506862 - 财政年份:2015
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Materials World Network: Spin Entanglement Using Transient Electrons in C and Si-Based Materials
材料世界网络:在碳和硅基材料中使用瞬态电子的自旋纠缠
- 批准号:
1107606 - 财政年份:2011
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Electron Spins on Liquid Helium for Quantum Computing
液氦上的电子自旋用于量子计算
- 批准号:
0726490 - 财政年份:2007
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Physics and Architecture of Spin-Based Quantum Computing with Electrons on the Surface of Liquid Helium
液氦表面电子的基于自旋的量子计算的物理和架构
- 批准号:
0323472 - 财政年份:2003
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Optical Nonlinearities and Electrooptic Effects in Asymmetric Quantum Structures
非对称量子结构中的光学非线性和电光效应
- 批准号:
9509257 - 财政年份:1995
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Engineering Research Equipment: High Repetition Rate Laser Pulse Amplifier for Ultrahigh Speed Semiconductor and Optoelectronic Device Research
工程研究设备:用于超高速半导体和光电器件研究的高重复率激光脉冲放大器
- 批准号:
9212447 - 财政年份:1992
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Electronic States and Carrier Relaxation in Heterostructures and Quantum Wells
总统青年研究员奖:异质结构和量子阱中的电子态和载流子弛豫
- 批准号:
8351620 - 财政年份:1984
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
相似海外基金
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
- 批准号:
FL220100059 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Australian Laureate Fellowships
Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
- 批准号:
MR/X03660X/1 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Fellowship
Dehydration reaction in water using geo-mimetic confined nanochannels
使用几何模拟受限纳米通道在水中进行脱水反应
- 批准号:
24K17586 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Research Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
- 批准号:
2242365 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
- 批准号:
2344923 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Virtual Reality Maritime Safety Training: Navigating Emergency Scenarios in Confined Spaces (VR Emergency @Sea)
虚拟现实海事安全培训:密闭空间紧急情况导航(VR Emergency @Sea)
- 批准号:
10108437 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Launchpad
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
- 批准号:
2242366 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Examination of the phase behaviour of liquid crystal molecules in confined systems by Replica-Exchange Monte-Carlo simulations
通过复制交换蒙特卡罗模拟检查受限系统中液晶分子的相行为
- 批准号:
22KJ2724 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: in situ Polymer Gelation in Confined Flows
职业:受限流动中的原位聚合物凝胶化
- 批准号:
2239742 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant














{{item.name}}会员




