Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases

开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Branched structures are essential for the formation of many organs and glands during development. In addition, many invasive diseases including abnormal angiogenesis and collective cancer invasion also take the form of branches. Hence, understanding the mechanism underlying the patterning and morphogenesis of branches is of critical importance in both fundamental biology of development and treatment of human diseases. Branching processes, including the elongation, bifurcation, and termination of the branches, can be regulated by biochemical signals, such as fibroblast growth factors and hormones. Recent work also suggests that mechanical signals from the extracellular matrix and from neighboring cells also influence branching dynamics. However, likely due to the lack of quantitative tools that can measure the distribution of mechanical forces within the branches, how mechanics regulates the branching process is still not well understood. In this project, we propose to develop a novel quantitative tool, termed branch stress microscopy (BSM), that can precisely map the spatiotemporal distribution of intercellular mechanical stresses during the branching process. Even with significant developments in cell and tissue mechanics over the past decades, quantifying intercellular mechanical stresses within a three-dimensional space remains a challenging task. Hence, to manage the risk, the proposed project is designed with two progressively riskier and more rewarding aims. In Aim 1, we will develop a relatively simple 1D version of BSM that quantifies the cross-sectional stress along a morphogenetic branch. Confocal microscopy will be combined with a three-dimensional traction stress calculation to obtain the total force and average stress exerted at the cross section via force balance equations. We will then validate the stress calculated from 1D BSM against that from the current state of the art using 3D cancer collective migration as a biological model. In Aim 2, we will take one step further to develop a 3D version of BSM to resolve the complete 3D distribution of intercellular stresses within a branch segment. We will make necessary measurements and assumptions regarding the branch material properties and stress or displacement values at the boundary of the branch segment and turn the task into a boundary value problem in solid mechanics. We will then calculate the stress distribution within invading cancer branches using finite element analysis and validate the assumptions and the robustness of the tool by comparing with the stresses measured by the current state of the art. In sum, this project will combine in silico and in vitro engineering and biological approaches to develop a novel quantitative tool that may be widely applicable to any branching processes in vitro, ex vivo and even in vivo, thus providing a versatile technology for branching mechanobiology in development and diseases.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia A. Reinhart-King其他文献

Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
  • DOI:
    10.1038/s41698-019-0092-3
  • 发表时间:
    2019-08-21
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
  • DOI:
    10.1007/s12195-018-00564-x
  • 发表时间:
    2018-12-07
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
  • DOI:
    10.1007/s10585-024-10269-3
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
  • DOI:
    10.1007/s10585-021-10102-1
  • 发表时间:
    2021-06-02
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
  • DOI:
    10.1007/s12195-024-00836-9
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King

Cynthia A. Reinhart-King的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金

Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
  • 批准号:
    10467279
  • 财政年份:
    2022
  • 资助金额:
    $ 22.81万
  • 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
  • 批准号:
    10710186
  • 财政年份:
    2022
  • 资助金额:
    $ 22.81万
  • 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
  • 批准号:
    10590648
  • 财政年份:
    2022
  • 资助金额:
    $ 22.81万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10386588
  • 财政年份:
    2019
  • 资助金额:
    $ 22.81万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10204600
  • 财政年份:
    2019
  • 资助金额:
    $ 22.81万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10556661
  • 财政年份:
    2019
  • 资助金额:
    $ 22.81万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10361418
  • 财政年份:
    2019
  • 资助金额:
    $ 22.81万
  • 项目类别:
Mechanical Regulation of Tumor Angiogenesis
肿瘤血管生成的机械调节
  • 批准号:
    9471682
  • 财政年份:
    2015
  • 资助金额:
    $ 22.81万
  • 项目类别:
Mechanical Regulation of Tumor Angiogenesis
肿瘤血管生成的机械调节
  • 批准号:
    9043946
  • 财政年份:
    2015
  • 资助金额:
    $ 22.81万
  • 项目类别:
Mechanical Regulation of Tumor Angiogenesis
肿瘤血管生成的机械调节
  • 批准号:
    9281372
  • 财政年份:
    2015
  • 资助金额:
    $ 22.81万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 22.81万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 22.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了