Binary and Ternary Semiconductor Quantum Rods: A Computational Route to Next-Generation All-Inorganic Photovoltaic Materials
二元和三元半导体量子棒:下一代全无机光伏材料的计算路线
基本信息
- 批准号:0730365
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The efficiency of photovoltaic systems based on inorganic nanocrystals could far surpass that of currently used bulk thin film (e.g., Si) based architectures, as the quantum confinement in nanocrystals makes them significantly better at converting solar photons to electron-hole pairs (or excitons). Nevertheless, major challenges remain, concerning the dissociation of the exciton into electrons and holes-a necessary condition for the efficient overall conversion of solar to electrical energy. This proposal rests on the idea that carefully designed interfaces between materials of the right type within a quantum rod will help achieve enhanced exciton dissociation and therefore optimal photovoltaic performance. Intellectual Merit: The objective of this proposal is to use an integrated set of first principles computations based on density functional theory (DFT) to study a variety of binary and ternary quantum rod (QR) systems containing interfaces. Binary systems to be studied will include CdSe and CdTe, and ternary systems will include CdSe1-xTex, Cd1-xZnxSe, CdTe1-xSx, and ZnSe1-xTex. Crystal structure variation along the length of the binary systems, and composition (i.e., x value) variation along the QR radius or length will be considered so as to result in core/shell or end-contacted interfaces. The specific system choices were motivated (among other factors) by their potential for the creation of staggered Type II valence and conduction band edge offsets at interfaces. Engineering such Type II band offsets will be critical to increasing the extent of exciton dissociation. DFT computations will be used to assess the stability and electronic structure of these systems as a function of quantum confinement (i.e., QR radius) and the rapidity of composition variations across the interface. The DFT electronic eigenvalues and wavefunctions will then be used to investigate critical properties related to exciton dissociation such as variations in the band edge positions across interfaces, electron-hole binding energy as a function of electron and hole wavefunction position, barriers to exciton dissociation and exciton recombination lifetime. Broader Impact: An important component of this proposal is the education of students. The industrial experience of the PI will enhance the engineering education of students and will aid in broadening student exposure beyond the academic environment through interactions with industry (via internships, visits and joint publications). The PI will continue to refine and teach a Computational Materials Science course he developed in 2006, which is filling a gap in the current curricula of the Engineering, Physics and Chemistry departments at the UConn. Outreach activities will be fostered to increase public awareness in the areas of Alternative Energy Solutions and Nanotechnology, in collaboration with local establishments committed to community services (e.g., public libraries and museums). In particular, the PI has the strong support of the Tolland Public Library and local middle/high school teachers, in aiding his outreach efforts, and in packaging and propagating the excitement of his research, and of Science & Engineering in general, to the local communities.
基于无机纳米晶体的光伏系统的效率可能远远超过目前使用的基于大块薄膜(例如Si)的架构,因为纳米晶体中的量子约束使它们在将太阳光子转换为电子-空穴对(或激子)方面表现得更好。然而,主要的挑战仍然存在,关于激子解离成电子和空穴——这是太阳能到电能有效全面转换的必要条件。该提议基于这样一种想法,即在量子棒内精心设计合适类型的材料之间的界面将有助于实现增强的激子解离,从而实现最佳的光伏性能。智力优势:本提案的目标是使用基于密度泛函理论(DFT)的一套综合第一性原理计算来研究各种包含界面的二元和三元量子棒(QR)系统。所研究的二元体系包括CdSe和CdTe,三元体系包括CdSe1-xTex、Cd1-xZnxSe、CdTe1-xSx和ZnSe1-xTex。考虑晶体结构沿二元体系长度的变化,以及组成(即x值)沿QR半径或长度的变化,从而产生核/壳或端接触界面。具体系统选择的动机(除其他因素外)是由于它们在界面处产生交错型价和导带边缘偏移的潜力。工程这样的II型波段偏移将是增加激子解离程度的关键。DFT计算将用于评估这些系统的稳定性和电子结构,作为量子约束(即QR半径)的函数和组成在界面上变化的速度。然后,DFT电子特征值和波函数将用于研究与激子解离相关的关键特性,如带边位置在界面上的变化,电子-空穴结合能作为电子和空穴波函数位置的函数,激子解离的障碍和激子复合寿命。更广泛的影响:该提案的一个重要组成部分是对学生的教育。PI的工业经验将加强学生的工程教育,并将通过与工业的互动(通过实习,访问和联合出版物)帮助扩大学生在学术环境之外的接触。PI将继续完善和教授他在2006年开发的计算材料科学课程,该课程填补了康涅狄格大学工程、物理和化学系目前课程的空白。将与致力于社区服务的地方机构(例如公共图书馆和博物馆)合作,促进外联活动,以提高公众对替代能源解决方案和纳米技术领域的认识。特别值得一提的是,PI得到了托兰公共图书馆和当地初中/高中教师的大力支持,协助他的外联工作,并向当地社区包装和宣传他的研究以及科学与工程的兴奋之处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramamurthy Ramprasad其他文献
Ramamurthy Ramprasad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramamurthy Ramprasad', 18)}}的其他基金
I-Corps: Using machine learning methods and polymer data to predict properties of new polymers and accelerate application-specific polymer design
I-Corps:使用机器学习方法和聚合物数据来预测新聚合物的特性并加速特定应用的聚合物设计
- 批准号:
1953854 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI-TT: An Artificial Intelligence Capability to Accelerate Low-Cost Commercial Polymer Design
PFI-TT:加速低成本商业聚合物设计的人工智能能力
- 批准号:
1941029 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CDS&E: D3SC: Accelerating Density Functional Theory Based Simulations and Materials Design with Machine Learning
CDS
- 批准号:
1900017 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Accelerated Dynamics of Surface Chemical Reactions
表面化学反应的加速动力学
- 批准号:
1821992 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Accelerated Dynamics of Surface Chemical Reactions
表面化学反应的加速动力学
- 批准号:
1600218 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Accelerating catalyst discovery using systematic first principles chemical space explorations
EAGER:利用系统第一原理化学空间探索加速催化剂发现
- 批准号:
1338421 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: MOSFETs with atomically engineered metal/high-k interfaces
合作研究:具有原子工程金属/高 k 接口的 MOSFET
- 批准号:
1002301 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Electrical degradation in high-k dielectrics based devices: A computational study
基于高 k 电介质的器件的电退化:计算研究
- 批准号:
0700172 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Molecular Level Understanding of Dynamic Speciation to Inform Complex Reaction Pathways and Control the Rational Synthesis of Ternary Semiconductor Nanoparticles
分子水平上对动态形态的理解,以了解复杂的反应途径并控制三元半导体纳米颗粒的合理合成
- 批准号:
2109141 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of semiconductor materials for ternary solar cells to control the interface of the active layer
开发三元太阳能电池半导体材料控制有源层界面
- 批准号:
19K21129 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Basic properties of ternary group III nitride compound semiconductor non-polar surfaces
三元III族氮化物化合物半导体非极性表面的基本性质
- 批准号:
398305088 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Research Grants
Transient absorption spectroscopy with attosecond EUV pulses on binary and ternary solar cell semiconductor systems for the investigations of their charge carrier dynamics
使用阿秒 EUV 脉冲对二元和三元太阳能电池半导体系统进行瞬态吸收光谱,用于研究其载流子动力学
- 批准号:
341857518 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Research Fellowships
Quantitative analysis of potential barrier in GaInN ternary alloy semiconductor by microscopic spectroscopy and the mechanisms for high quantum efficiency
显微光谱定量分析GaInN三元合金半导体势垒及高量子效率机制
- 批准号:
16K06264 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ternary wurtzite-type narrow band gap oxide semiconductor; Fabrication of thin-films and application to thin-film solar cells
三元纤锌矿型窄带隙氧化物半导体;
- 批准号:
26289239 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ternary and quaternary III-V semiconductor nanowires and related quantum structures for optoelectronics applications
用于光电子应用的三元和四元 III-V 半导体纳米线及相关量子结构
- 批准号:
DP120103439 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
Synthesis of cu-group 12-chalcogenide ternary semiconductor nanoclusters
Cu族12硫族化物三元半导体纳米团簇的合成
- 批准号:
346516-2008 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Master's
Synthesis of cu-group 12-chalcogenide ternary semiconductor nanoclusters
Cu族12硫族化物三元半导体纳米团簇的合成
- 批准号:
346516-2007 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Study and Control of the Optoelectronic Properties of Ternary Semiconductor Nanomaterials
职业:三元半导体纳米材料光电性能的研究与调控
- 批准号:
0239688 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant