Random Walks and Scaling Limits

随机游走和缩放限制

基本信息

  • 批准号:
    0734151
  • 负责人:
  • 金额:
    $ 33.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-02-20 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

0405021Lawler There has been significant progress in the last few years in the rigorous understanding of two-dimensional lattice models in statistical physics "at criticality". A number of continuous models, most particularly the Schramm-Loewner evolution (SLE), have been constructed, and in some cases it has been proved that discrete models approach SLE in the limit. The proposer will study a number of discrete models, e.g., self-avoiding walk, Laplacian random walks, and walks on certain random graphs, with the hope of showing that they also converge to SLE. Also, the proposer will consider models in three dimensions where the recently developed techniques which rely on conformal invariance to not apply. The goal is to find three-dimensional continuous models to be candidates for limits of discrete systems. The goal of this proposal is to construct and analyze mathematical models for phase transition, which is the study of the sharp changes in a physical system when changing a parameter such as the freezing of water when the temperature is reduced. More generally, the mathematical goal is to understand universality principles that allow one to predict macroscopic behavior from microscopic rules. As well as being important to probability theory, the results will be relevant to many areas of theoretical physics. Special focus will be placed on the approach to the limit for two-dimensional models where the limit itself is now well understood and to construct candidates for the limit in three dimensions where the problems are more challenging.
0405021 Lawler在过去的几年里,在严格理解统计物理学中的二维晶格模型“临界”方面取得了重大进展。一些连续模型,特别是Schramm-Loewner演化(SLE),已经被构建,在某些情况下,它已被证明,离散模型接近SLE的极限。提议者将研究一些离散模型,例如,自避免行走,拉普拉斯随机行走,以及某些随机图上的行走,希望表明它们也收敛于SLE。此外,提议者将考虑三维模型,其中最近开发的依赖于共形不变性的技术不适用。我们的目标是找到三维连续模型的离散系统的极限的候选人。 该提案的目标是构建和分析相变的数学模型,相变是研究物理系统在改变参数时的急剧变化,例如温度降低时水的冻结。更一般地说,数学的目标是理解普适性原理,使人们能够从微观规则预测宏观行为。除了对概率论很重要外,这些结果还与理论物理的许多领域有关。特别重点将放在二维模型的极限的方法,现在已经很好地理解了极限本身,并在三维中构建候选人的极限,其中的问题更具挑战性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Lawler其他文献

A Geometric Interpretation of Half-Plane Capacity
半平面容量的几何解释
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Lalley;Gregory Lawler;Hariharan Narayanan
  • 通讯作者:
    Hariharan Narayanan

Gregory Lawler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Lawler', 18)}}的其他基金

Scaling limits of random curves at criticality
临界点随机曲线的标度极限
  • 批准号:
    1513036
  • 财政年份:
    2015
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
Schramm-Loewner Evolution and Other Scaling Limits
Schramm-Loewner 演化和其他缩放限制
  • 批准号:
    0907143
  • 财政年份:
    2009
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
Travel Support: Brazilian Probability School and IMS Meeting, 2006
差旅支持:巴西概率学院和 IMS 会议,2006 年
  • 批准号:
    0611059
  • 财政年份:
    2006
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Seminar on Stochastic Processes -- 2005
随机过程研讨会 -- 2005
  • 批准号:
    0455988
  • 财政年份:
    2005
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Random Walks and Scaling Limits
随机游走和缩放限制
  • 批准号:
    0405021
  • 财政年份:
    2004
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
Studies in Brownian Motion and Random Walk
布朗运动和随机游走研究
  • 批准号:
    9971220
  • 财政年份:
    1999
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Brownian Motion and Random Walk
数学科学:布朗运动和随机游走的研究
  • 批准号:
    9626642
  • 财政年份:
    1996
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Seminar on Stochastic Processes; March 14-16, 1996; Durham, North Carolina
数学科学:随机过程研讨会;
  • 批准号:
    9529433
  • 财政年份:
    1996
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Random Walk
数学科学:随机游走研究
  • 批准号:
    9303771
  • 财政年份:
    1993
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Random Walks
数学科学:随机游走研究
  • 批准号:
    9100336
  • 财政年份:
    1991
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
  • 批准号:
    2348399
  • 财政年份:
    2024
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-Interacting Random Walks
自交互随机游走
  • 批准号:
    DP230102209
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Discovery Projects
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
  • 批准号:
    EP/W022923/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Parallelization and robustness of random walks: Approaches from "short" random walks analysis
随机游走的并行化和鲁棒性:“短”随机游走分析的方法
  • 批准号:
    23K16840
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
  • 批准号:
    EP/W033917/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
RUI: Boundary and entropy of random walks on groups
RUI:群体随机游走的边界和熵
  • 批准号:
    2246727
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Limit theorem for quantum walks interacting with environment
量子行走与环境相互作用的极限定理
  • 批准号:
    23K03229
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of limit theorems for random walks
随机游走极限定理的新发展
  • 批准号:
    23K12986
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了