SGER: Exploiting Anomalous Diffusion at Polymorphic Transitions for Large Ingress of Elements and Deeper Surface Coatings in Metals

SGER:利用多晶型转变处的反常扩散来实现元素的大量侵入和金属中更深的表面涂层

基本信息

  • 批准号:
    0737883
  • 负责人:
  • 金额:
    $ 16.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL: In this high risk/high payoff, transformative project, PI will explore the interesting possibility of "pumping" a large amount of elements by exploiting the anomalous diffusion at polymorphic transitions, to achieve deep and enriched surface layers/coatings in metals. This idea has been triggered by PI's recent observations during B diffusion in titanium where an unusual and interesting result was found. Nanostructured titanium boride (TiB) whiskers exhibited an unusually deeper growth into titanium substrate, when diffusion occurred close to the polymorphic transition temperature. Although this might appear strange at first, there is some convincing and indirect evidence supporting this phenomenon. Anomalous (fast) diffusion in metals has been noted near polymorphic transitions of metals leading to a curvature in Arrhenius-plot of diffusion coefficient. Due to the lattice instability accompanying the phase transition, this is speculated to trigger huge atomic flux, pumping-in lot of species (such as C, B, N, O) from surface to interior. Except for PI's preliminary evidence, none of these have been demonstrated conclusively. The broad intellectual question that will be resolved in this research is what happens when interstitial elements, C, B, N, O are diffused into metals, near or exactly at the polymorphic transition temperatures, and how this unusual process can be understood from atomic/kinetic point of view. PI will explore this aspect, both experimentally and theoretically, in two candidate materials, Ti and Fe during solid/vapor state diffusion of B, C, N at polymorphic transitions. NON-TECHNICAL: If this anomalously deeper diffusion of species in metals is confirmed across major classes of metals (such as Fe, Ti, Zr, Co) that undergo polymorphic transitions, then this would have a great impact in surface science and engineering (high payoff, transformative elements). One can then exploit this phenomenon for solid state diffusion of elements (C, N, B, O) to form deep and enriched surface hard coatings (carbides, borides and nitrides) on metals. In particular, Fe and Ti are prime candidates as these metals are commonly carburized, nitrided or borided to increase surface hardness and wear resistance--the anomalous diffusion at the polymorphic transition temperature can be taken advantage of here, in producing deeper and more enriched surface layers at much less time and energy cost. Demonstration of large ingress of interstitials in Ti and Fe and the attendant achievement of deeper coating and hardening should revolutionize the surface treatment industry - a large number of gears, bearings, tools, dies and other components are routinely surface hardened to increase hardness and wear resistance. Performing these processes at or near phase transition temperatures and at shorter times should lead to large energy/cost savings in industry. This research will employ one undergraduate student and one graduate student (minority or under-represented-group candidate if available).
技术支持:在这个高风险/高回报的变革性项目中,PI将探索通过利用多晶型转变处的异常扩散来“泵送”大量元素的有趣可能性,以实现金属的深层和富集的表面层/涂层。这个想法是由PI最近的观察引发的,在B在钛中的扩散过程中,发现了一个不寻常的和有趣的结果:纳米结构的硼化钛(Ti B)晶须表现出不寻常的更深的生长到钛基体中,当扩散发生接近多晶型转变温度。虽然这可能看起来很奇怪,但有一些令人信服的间接证据支持这一现象。在金属的多晶型转变附近发现了金属中的异常(快速)扩散,导致扩散系数的Arrhenius曲线弯曲。由于伴随相变的晶格不稳定性,推测这引发了巨大的原子通量,从表面到内部泵入大量物种(如C,B,N,O)。除了PI的初步证据,这些都没有得到最终证明。在本研究中将解决的广泛的智力问题是当间隙元素C、B、N、O扩散到金属中时会发生什么,接近或正好在多晶型转变温度,以及如何从原子/动力学的角度理解这个不寻常的过程。PI将在实验和理论上探索这方面,在两种候选材料,钛和铁在固态/气相扩散的B,C,N在多晶型转变。非技术性:如果在经历多晶型转变的主要金属类别(如Fe,Ti,Zr,Co)中证实了金属中物种的这种有害的更深扩散,那么这将对表面科学和工程产生巨大影响(高回报,转化元素)。然后可以利用这种现象进行元素(C、N、B、O)的固态扩散,以在金属上形成深的和富集的表面硬涂层(碳化物、硼化物和氮化物)。特别是,Fe和Ti是主要的候选者,因为这些金属通常被渗碳、氮化或硼化以增加表面硬度和耐磨性-在多晶型转变温度下的异常扩散可以在这里被利用,以更少的时间和能量成本产生更深和更富集的表面层。钛和铁中大量杂质的进入以及随之而来的更深涂层和硬化的实现将彻底改变表面处理行业-大量齿轮,轴承,工具,模具和其他部件通常进行表面硬化,以增加硬度和耐磨性。在相变温度或接近相变温度下和在较短时间内执行这些过程应导致工业中的大量能量/成本节约。这项研究将雇用一名本科生和一名研究生(少数民族或代表性不足的群体候选人,如果有的话)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

K. S. Ravi Chandran其他文献

Review: Fatigue of Fiber-Reinforced Composites, Damage and Failure
Strength–Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships
Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength
  • DOI:
    10.1007/s11837-016-1821-5
  • 发表时间:
    2016-01-28
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Fei Cao;K. S. Ravi Chandran
  • 通讯作者:
    K. S. Ravi Chandran

K. S. Ravi Chandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('K. S. Ravi Chandran', 18)}}的其他基金

DMREF/GOALI/Collaborative Research: Computational Design, Rapid Processing and Characterization of Multiple Classes of Materials to Accelerate Materials Innovation
DMREF/GOALI/协作研究:多类材料的计算设计、快速加工和表征,以加速材料创新
  • 批准号:
    1435758
  • 财政年份:
    2014
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Standard Grant
EAGER: Exploiting Electrochemically-induced Phase Transformations in Mg-Li Thin Film Electrodes for Ultra-high Capacity Energy Storage
EAGER:利用镁锂薄膜电极中的电化学诱导相变来实现超高容量储能
  • 批准号:
    1135176
  • 财政年份:
    2011
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Standard Grant
SGER: Achieving Large Improvements in Fatigue Life of Engineering Materials by the Suppression of Competing Surface Crack Initiations
SGER:通过抑制竞争性表面裂纹萌生,大幅提高工程材料的疲劳寿命
  • 批准号:
    0635269
  • 财政年份:
    2006
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Standard Grant
Conference on Small Fatigue Cracks: Mechanics and Mechanisms, Kona, Hawaii, December 6-11, 1998
小疲劳裂纹会议:力学和机制,夏威夷科纳,1998 年 12 月 6-11 日
  • 批准号:
    9815137
  • 财政年份:
    1998
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Standard Grant
Application of a Novel Experimental Technique to Probe the Effect of Microstructure on Small Cracks in Fatigue
应用新型实验技术探讨微观结构对疲劳小裂纹的影响
  • 批准号:
    9615705
  • 财政年份:
    1997
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Studentship
Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Studentship
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
  • 批准号:
    2906887
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
  • 批准号:
    BB/Z514470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.83万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了