EAGER: Exploiting Electrochemically-induced Phase Transformations in Mg-Li Thin Film Electrodes for Ultra-high Capacity Energy Storage

EAGER:利用镁锂薄膜电极中的电化学诱导相变来实现超高容量储能

基本信息

  • 批准号:
    1135176
  • 负责人:
  • 金额:
    $ 8.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: Research is proposed to understand the mechanism of reversible phase transformations in Mg-Li phase-changing anodes during electrochemical insertion/removal of Li in Mg thin films during the charging/discharging processes. The key concept of this research is that starting with a pure Mg anode, a phase change from HCP Mg to BCC Li-Mg can be induced in the anode during Li charging (and the reverse during discharging). The key question is how the thin film microstructural variables affect the reversibility of the electrochemically-induced phase transformations. The size and intercolumnar spacing of the columnar grains, as well as the grain orientation, are the primary variables affecting the phase transformation. The hypothesis is that there could be an optimum grain size and intercolumnar spacing that accommodates the volume change of the phase transition, fully allowing maximization of Li storage and removal without the destruction of the electrode. This is a high-risk research, because it is not certain that the reversibility of phase transformation and volume change accommodation is repeatable over the sufficient number of cycles required in batteries. Specifically, the research involves making Mg films of various thicknesses with ultrafine and columnar grain structures, either by sputtering or PVD, micromachining using MEMS fabrication techniques to extend the intercolumnar spacing, testing electrochemical cells to understand the nature of the reversible phase change from HCP Mg to BCC Li-Mg and vice-versa during charging/discharging and experimental determination of the capacity, cyclability and stability of the performance during the charge/discharge cycles.NON-TECHNICAL SUMMARY: Next-generation electric vehicles, as well as effective utilization of renewable energy from solar cells and windmills, will require major technological breakthroughs in electrical energy storage and retrieval. A high-risk and high-payoff research poject is proposed to exploit phase transformations in lithium-magnesium alloy anodes to help develop ultra-high-capacity energy storage batteries with capacities much larger than those currently under consideration for electric vehicles. The research could potentially lead to new electrode materials and structures for a new generation of reliable and high-capacity batteries, which could in turn accelerate the development of low-cost plug-in electric vehicles. The project will employ a graduate student and one or more undergraduate students, provide education and training in the area of battery materials science research, and develop outreach/recruitment presentations aimed at senior high school students. The research will be integrated into class lectures on battery materials science for a graduate course on Energy Science and Engineering. Public outreach presentations, under the theme of "energy materials science", to high school students and parents during University Science Day recruitment events, will also be made.
技术概要:研究了镁锂相变阳极在充放电过程中对镁薄膜进行电化学嵌锂/脱锂时的可逆相变机理。 本研究的关键概念是,从纯Mg阳极开始,在Li充电期间(和放电期间的相反),可以在阳极中诱导从HCP Mg到BCC Li-Mg的相变。关键问题是薄膜的微观结构变量如何影响电化学诱导相变的可逆性。 柱状晶的尺寸和间距,以及晶粒取向,是影响相变的主要变量。 该假设是,可以有一个最佳的晶粒尺寸和柱间距,容纳相变的体积变化,完全允许最大化的锂存储和去除,而不破坏电极。 这是一项高风险的研究,因为不能确定相变和体积变化调节的可逆性是否可以在电池所需的足够数量的循环中重复。具体而言,研究涉及通过溅射或PVD制造具有超细和柱状晶粒结构的各种厚度的Mg膜,使用MEMS制造技术进行微机械加工以扩展柱间距,测试电化学电池以了解在充电/放电期间从HCP Mg到BCC Li-Mg的可逆相变的性质,以及容量的实验测定,非技术性概述:下一代电动汽车,以及来自太阳能电池和风车的可再生能源的有效利用,将需要在电能存储和回收方面的重大技术突破。 提出了一个高风险和高回报的研究项目,利用锂镁合金阳极中的相变来帮助开发比目前考虑的电动汽车容量大得多的超高容量储能电池。这项研究可能会为新一代可靠的高容量电池带来新的电极材料和结构,从而加速低成本插电式电动汽车的发展。该项目将雇用一名研究生和一名或多名本科生,提供电池材料科学研究领域的教育和培训,并针对高中生开发推广/招聘演示文稿。这项研究将被纳入能源科学与工程研究生课程的电池材料科学课堂讲座。 在大学科学日招聘活动期间,还将以“能源材料科学”为主题向高中生和家长进行公众宣传。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

K. S. Ravi Chandran其他文献

Review: Fatigue of Fiber-Reinforced Composites, Damage and Failure
Strength–Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships
Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength
  • DOI:
    10.1007/s11837-016-1821-5
  • 发表时间:
    2016-01-28
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Fei Cao;K. S. Ravi Chandran
  • 通讯作者:
    K. S. Ravi Chandran

K. S. Ravi Chandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('K. S. Ravi Chandran', 18)}}的其他基金

DMREF/GOALI/Collaborative Research: Computational Design, Rapid Processing and Characterization of Multiple Classes of Materials to Accelerate Materials Innovation
DMREF/GOALI/协作研究:多类材料的计算设计、快速加工和表征,以加速材料创新
  • 批准号:
    1435758
  • 财政年份:
    2014
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
SGER: Exploiting Anomalous Diffusion at Polymorphic Transitions for Large Ingress of Elements and Deeper Surface Coatings in Metals
SGER:利用多晶型转变处的反常扩散来实现元素的大量侵入和金属中更深的表面涂层
  • 批准号:
    0737883
  • 财政年份:
    2007
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
SGER: Achieving Large Improvements in Fatigue Life of Engineering Materials by the Suppression of Competing Surface Crack Initiations
SGER:通过抑制竞争性表面裂纹萌生,大幅提高工程材料的疲劳寿命
  • 批准号:
    0635269
  • 财政年份:
    2006
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
Conference on Small Fatigue Cracks: Mechanics and Mechanisms, Kona, Hawaii, December 6-11, 1998
小疲劳裂纹会议:力学和机制,夏威夷科纳,1998 年 12 月 6-11 日
  • 批准号:
    9815137
  • 财政年份:
    1998
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Standard Grant
Application of a Novel Experimental Technique to Probe the Effect of Microstructure on Small Cracks in Fatigue
应用新型实验技术探讨微观结构对疲劳小裂纹的影响
  • 批准号:
    9615705
  • 财政年份:
    1997
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Studentship
Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Studentship
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
  • 批准号:
    2906887
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
  • 批准号:
    BB/Z514470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.54万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了