CAREER: Learning to Secure Cooperative Multi-Agent Learning Systems: Advanced Attacks and Robust Defenses

职业:学习保护协作多代理学习系统:高级攻击和强大的防御

基本信息

  • 批准号:
    2146548
  • 负责人:
  • 金额:
    $ 49.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Cooperative multi-agent learning (MAL), where multiple intelligent agents learn to coordinate with each other and with humans, is emerging as a promising paradigm for solving some of the most challenging problems in various security and safety-critical domains, including transportation, power systems, robotics, and healthcare. The decentralized nature of MAL systems and agents' exploration behavior, however, introduce new vulnerabilities unseen in standalone machine learning systems and traditional distributed systems. This project aims to develop a data-driven approach to MAL security that can provide an adequate level of protection even in the presence of persistent, coordinated, and stealthy malicious insiders or external adversaries. The main novelty of the project is to go beyond heuristics-based attack and defense schemes by incorporating opponent modeling and adaptation into security-related decision-making in a principled way. The project contributes to the emerging fields of science of security and trustworthy artificial intelligence via a cross-disciplinary approach that integrates cybersecurity, multi-agent systems, machine learning, and cognitive science. The interdisciplinary nature of this project also brings unique opportunities for both curriculum development and student training.Developing robust defenses for large-scale MAL systems faces fundamental challenges induced by the hidden behavioral patterns of malicious agents, the dynamics and uncertainty of the environment, and the necessity of protecting benign agents' local data in many privacy-sensitive settings. This project tackles the challenges by incrementally developing a (machine) theory of mind for adversarial decision-making in three research thrusts. The first thrust develops learning-based targeted and untargeted attacks against federated and decentralized machine learning systems. These attacks first infer a world model from publicly available data and then apply model-based reinforcement learning to identify an adaptive attack policy that can fully exploit the vulnerabilities of the systems. The second thrust investigates a proactive defense framework that combines adversarial training and local adaptation, utilizing the automated attack framework developed in the first thrust as a simulator of adversaries to obtain robust defenses. The third thrust studies security in cooperative multi-agent reinforcement learning systems by addressing a set of new challenges, including complicated interactions among agents, non-stationarity, and partial observability. The goal is to understand how malicious attacks and deceptions can prevent benign agents from reaching a socially preferred outcome and how accounting for a higher order of beliefs can help an agent (benign or malicious) in both fully cooperative and mixed-motive settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
协作多智能体学习(MAL),其中多个智能体学习相互协调和与人类协调,正在成为解决各种安全和安全关键领域(包括运输,电力系统,机器人和医疗保健)中一些最具挑战性问题的有前途的范例。然而,MAL系统的去中心化性质和代理的探索行为引入了独立机器学习系统和传统分布式系统中看不到的新漏洞。该项目旨在开发一种数据驱动的MAL安全方法,即使存在持续、协调和隐形的恶意内部人员或外部对手,也可以提供足够的保护。该项目的主要新奇之处在于,通过将对手建模和适应以原则性的方式纳入安全相关决策,超越了基于战略的攻击和防御计划。该项目通过整合网络安全,多智能体系统,机器学习和认知科学的跨学科方法,为安全科学和值得信赖的人工智能的新兴领域做出贡献。该项目的跨学科性质也为课程开发和学生培训带来了独特的机会。为大规模MAL系统开发强大的防御面临着由恶意代理的隐藏行为模式、环境的动态性和不确定性以及在许多隐私敏感设置中保护良性代理的本地数据的必要性引起的根本挑战。该项目通过在三个研究方向中逐步开发用于对抗性决策的(机器)心理理论来应对挑战。第一个推力是针对联邦和分散式机器学习系统开发基于学习的有针对性和无针对性的攻击。这些攻击首先从公开可用的数据中推断出世界模型,然后应用基于模型的强化学习来识别可以充分利用系统漏洞的自适应攻击策略。第二个推力研究了一个主动防御框架,该框架结合了对抗训练和本地适应,利用第一个推力中开发的自动攻击框架作为对手的模拟器,以获得强大的防御。第三个推力研究合作多智能体强化学习系统的安全性,通过解决一系列新的挑战,包括智能体之间的复杂交互,非平稳性和部分可观测性。其目标是了解恶意攻击和欺骗如何阻止良性代理达到社会偏好的结果,以及如何在完全合作和混合动机设置中解释更高的信念可以帮助代理(良性或恶意)。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Moving Target Defense Against Unknown Attacks: A Meta-reinforcement Learning Approach
  • DOI:
    10.1007/978-3-031-26369-9_6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henger Li;Zizhan Zheng
  • 通讯作者:
    Henger Li;Zizhan Zheng
Learning to Backdoor Federated Learning
  • DOI:
    10.48550/arxiv.2303.03320
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henger Li;Chen Wu;Senchun Zhu;Zizhan Zheng
  • 通讯作者:
    Henger Li;Chen Wu;Senchun Zhu;Zizhan Zheng
Learning to Attack Federated Learning: A Model-based Reinforcement Learning Attack Framework
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henger Li;Xiaolin Sun;Zizhan Zheng
  • 通讯作者:
    Henger Li;Xiaolin Sun;Zizhan Zheng
Does Delegating Votes Protect Against Pandering Candidates? (Extended Abstract)
委托投票是否可以防止迎合候选人?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zizhan Zheng其他文献

Sparse Deployment of Large Scale Wireless Networks for Mobile Targets
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zizhan Zheng
  • 通讯作者:
    Zizhan Zheng
Belief-Enriched Pessimistic Q-Learning against Adversarial State Perturbations
针对对抗性状态扰动的信念丰富的悲观 Q 学习
  • DOI:
    10.48550/arxiv.2403.04050
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaolin Sun;Zizhan Zheng
  • 通讯作者:
    Zizhan Zheng
On the efficiency-vs-security tradeoff in the smart grid
智能电网中效率与安全的权衡
  • DOI:
    10.1109/cdc.2012.6425909
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yara Abdallah;Zizhan Zheng;N. Shroff;H. E. Gamal
  • 通讯作者:
    H. E. Gamal

Zizhan Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zizhan Zheng', 18)}}的其他基金

NeTS: Small: Collaborative Research: Reliable 60 GHz WLANs through Coordination: Measurement, Modeling and Optimization
NeTS:小型:协作研究:通过协调实现可靠的 60 GHz WLAN:测量、建模和优化
  • 批准号:
    1816943
  • 财政年份:
    2018
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Towards Robust Moving Target Defense: A Game Theoretic and Learning Approach
SaTC:核心:小型:迈向稳健的移动目标防御:博弈论和学习方法
  • 批准号:
    1816495
  • 财政年份:
    2018
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330154
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER
通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒
  • 批准号:
    EP/Y036301/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Research Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
  • 批准号:
    24K20781
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330155
  • 财政年份:
    2024
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2238873
  • 财政年份:
    2023
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
  • 批准号:
    2235976
  • 财政年份:
    2023
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
  • 批准号:
    2235224
  • 财政年份:
    2023
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
SBIR Phase I: Secure Image Recognition and Machine Learning Using Advanced Cryptography
SBIR 第一阶段:使用高级加密技术进行安全图像识别和机器学习
  • 批准号:
    2304348
  • 财政年份:
    2023
  • 资助金额:
    $ 49.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了