PREVALT: Prediction and Validation of Alternative Splicing in Plants
PREVALT:植物选择性剪接的预测和验证
基本信息
- 批准号:0743097
- 负责人:
- 金额:$ 108.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Colorado State University is awarded a grant to develop machine learning methods for detecting alternative splicing in plants and to experimentally validate selected predictions. Alternative splicing has an important role in proteome diversity and gene regulation. Recent studies of large scale EST/cDNA datasets have revealed that the prevalence of alternative splicing in plants is much larger than expected, reaching around 30% of the genes, which is still significantly less than in human and mouse. This is primarily due to the much smaller amount of cDNA/EST data that is available in plants. Therefore we are likely far from the true extent of alternative splicing in plants. In human and mouse, several projects have made non-EST-based predictions of alternative splicing; none have been reported in plants to our knowledge. To fill this gap, the PIs will develop computational tools to predict novel alternative splicing events and the cis-elements involved in regulated alternative splicing. Alternative splicing in plants has different characteristics than in animals, and the proposed computational and experimental work will help elucidate the mechanistic basis for these differences. The initial focus will be in Arabidopsis, and the methods will be extended to rice and other plants for which genome and EST data are available. The end-results of the proposed research will be the creation of a web-accessible database of predicted and validated alternative splicing events and cis-elements; the software developed during the course of this project will be made available for researchers interested in predicting alternative splicing in other plant species.
科罗拉多州立大学获得了一笔赠款,用于开发机器学习方法来检测植物中的选择性剪接,并通过实验验证选定的预测。选择性剪接在蛋白质组多样性和基因调控中具有重要作用。最近对大规模EST/cDNA数据集的研究表明,植物中选择性剪接的流行率比预期的要大得多,达到约30%的基因,这仍然明显低于人类和小鼠。 这主要是由于植物中可获得的cDNA/EST数据量少得多。因此,我们很可能离植物中选择性剪接的真实程度还很远。 在人类和小鼠中,有几个项目已经对选择性剪接进行了非EST预测;据我们所知,没有一个在植物中报道过。 为了填补这一空白,PI将开发计算工具来预测新的选择性剪接事件和参与调节选择性剪接的顺式元件。选择性剪接在植物中有不同的特点,比在动物中,和拟议的计算和实验工作将有助于阐明这些差异的机制基础。 最初的重点将放在拟南芥上,这些方法将扩展到水稻和其他基因组和EST数据可用的植物。 拟议研究的最终结果将是建立一个预测和验证的选择性剪接事件和顺式元件的网络访问数据库;在该项目过程中开发的软件将提供给有兴趣预测其他植物物种中的选择性剪接的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asa Ben-Hur其他文献
A Support Vector Method for Hierarchical Clustering
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Asa Ben-Hur - 通讯作者:
Asa Ben-Hur
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies
使用下一代测序技术解码植物转录组和表观转录组的共/转录后复杂性
- DOI:
10.1042/bst20190492 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Anireddy S.N. Reddy;Jie Huang;Naeem H. Syed;Asa Ben-Hur;Suomeng Dong;Lianfeng Gu - 通讯作者:
Lianfeng Gu
Support vector clustering
- DOI:
10.4249/scholarpedia.5187 - 发表时间:
2008-06 - 期刊:
- 影响因子:0
- 作者:
Asa Ben-Hur - 通讯作者:
Asa Ben-Hur
Asa Ben-Hur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Asa Ben-Hur', 18)}}的其他基金
EAGER: IIBR Informatics: Deep learning tools for the identification of RNA modifications from direct RNA sequencing data
EAGER:IIBR 信息学:用于从直接 RNA 测序数据中识别 RNA 修饰的深度学习工具
- 批准号:
1949036 - 财政年份:2020
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
ABI Innovation: DeepStruct: Learning representations of protein 3-d structures and their interfaces using deep architectures
ABI 创新:DeepStruct:使用深层架构学习蛋白质 3-d 结构及其界面的表示
- 批准号:
1564840 - 财政年份:2016
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
Collaborative Research: GOSTRUCT: modeling the structure of the Gene Ontology for accurate protein function prediction
合作研究:GOSTRUCT:对基因本体结构进行建模以实现准确的蛋白质功能预测
- 批准号:
0965768 - 财政年份:2010
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
相似海外基金
Development and Validation of a Combined Risk Prediction Model for Childhood Obesity Using Cord Blood Genomics and Epigenomics
利用脐带血基因组学和表观基因组学开发和验证儿童肥胖联合风险预测模型
- 批准号:
23H02880 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
2021BBSRC-NSF/BIO UniPlex - Genome-Wide Protein Complex Prediction and Validation
2021BBSRC-NSF/BIO UniPlex - 全基因组蛋白质复合物预测和验证
- 批准号:
BB/X002179/1 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Research Grant
External validation of a clinical prediction model for infective endocarditis among patients with undiagnosed fever: A multi-center prospective observational study
未确诊发热患者感染性心内膜炎临床预测模型的外部验证:一项多中心前瞻性观察研究
- 批准号:
23K14739 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Derivation and validation of a clinical prediction rule to identify febrile infants 61 to 90 days old at low and non-negligible risk of invasive bacterial infections
推导和验证临床预测规则,以识别 61 至 90 天大的发热婴儿,其侵袭性细菌感染的风险较低且不可忽略
- 批准号:
10574286 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310396 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
Prediction and validation of plausible biological phenomena using systematic preprocessing in drug discovery research.
在药物发现研究中使用系统预处理来预测和验证合理的生物现象。
- 批准号:
23K11320 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prospective Validation of Neurophysiologic Outcome Prediction in Acute Brain Injury
急性脑损伤神经生理结果预测的前瞻性验证
- 批准号:
10584338 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
2021BBSRC-NSF/BIO UniPlex - Genome-Wide Protein Complex Prediction and Validation
2021BBSRC-NSF/BIO UniPlex - 全基因组蛋白质复合物预测和验证
- 批准号:
BB/X002683/1 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Research Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310395 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别:
Standard Grant
Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
- 批准号:
10742205 - 财政年份:2023
- 资助金额:
$ 108.66万 - 项目类别: