EAGER: IIBR Informatics: Deep learning tools for the identification of RNA modifications from direct RNA sequencing data
EAGER:IIBR 信息学:用于从直接 RNA 测序数据中识别 RNA 修饰的深度学习工具
基本信息
- 批准号:1949036
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The role of mRNA modifications as a regulatory process that affects gene expression at multiple levels is not well studied or understood. Current experimental tools for determining RNA modifications are laborious, noisy, and often do not provide exact locations of modified bases. Sequencing using Oxford Nanopore technology offers multiple advantages over Illumina sequencing including long reads and the ability to directly sequence RNA without the need for amplification, leading to reduced bias in coverage and the potential ability to uncover modified bases. The potential for discovering modified bases is still unfulfilled due to the lack of tools for this task. This project seeks to to make it significantly easier to identify RNA modifications globally and to help uncover the biological roles of the over 150 different types of RNA modifications. The challenge in the proposed research is that of the relatively small number of known modified bases, requiring clever design of sufficiently large labeled datasets, and necessitating the use of deep learning training algorithms that can succeed despite the relatively smaller datasets. The project draws upon recent developments in deep learning for tasks with few available labeled training examples to develop novel ways in which deep learning architectures for base calling can be applied to calling of modified RNA bases.The proposed work will be transformative for research into RNA modifications and will enable the use of nanopore sequencing as a one-stop-shop for this purpose. Furthermore, it has the potential of leading to improved methods for the detection of targets of RNA-binding proteins, as several novel methods for this task are based on detecting modified RNA bases. Oxford Nanopore does not release the code for their production base calling software as open-source, limiting the ability of the research community to extend their methods to handle modifications. The tools designed as part of this work will provide a flexible open-source alternative, enabling progress on base calling of nanopore data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
mRNA修饰作为在多个水平上影响基因表达的调控过程的作用还没有得到很好的研究或理解。目前用于确定RNA修饰的实验工具是费力的、嘈杂的,并且通常不能提供修饰的碱基的精确位置。使用Oxford Nanopore技术的测序提供了超过Illumina测序的多个优势,包括长读段和直接测序RNA而无需扩增的能力,从而降低了覆盖范围的偏倚和发现修饰碱基的潜在能力。由于缺乏用于这项任务的工具,发现修饰碱基的潜力仍然没有得到满足。该项目旨在使全球范围内识别RNA修饰变得更加容易,并帮助揭示150多种不同类型的RNA修饰的生物学作用。拟议研究的挑战在于已知修改的碱基数量相对较少,需要巧妙设计足够大的标记数据集,并且需要使用深度学习训练算法,尽管数据集相对较小,但仍然可以成功。该项目借鉴了深度学习的最新发展,针对几乎没有标记训练样本的任务,开发了新的方法,将用于碱基调用的深度学习架构应用于修饰RNA碱基的调用。拟议的工作将对RNA修饰的研究产生变革性影响,并将使纳米孔测序成为实现这一目的的一站式服务。此外,它有可能导致用于检测RNA结合蛋白的靶标的改进方法,因为用于该任务的几种新方法是基于检测修饰的RNA碱基。Oxford Nanopore不发布其生产基地的代码,将软件称为开源,限制了研究社区扩展其方法以处理修改的能力。作为这项工作的一部分,设计的工具将提供一个灵活的开源替代方案,使纳米孔数据的基础调用取得进展。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies
使用下一代测序技术解码植物转录组和表观转录组的共/转录后复杂性
- DOI:10.1042/bst20190492
- 发表时间:2020
- 期刊:
- 影响因子:3.9
- 作者:Anireddy S.N. Reddy;Jie Huang;Naeem H. Syed;Asa Ben-Hur;Suomeng Dong;Lianfeng Gu
- 通讯作者:Lianfeng Gu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asa Ben-Hur其他文献
A Support Vector Method for Hierarchical Clustering
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Asa Ben-Hur - 通讯作者:
Asa Ben-Hur
Support vector clustering
- DOI:
10.4249/scholarpedia.5187 - 发表时间:
2008-06 - 期刊:
- 影响因子:0
- 作者:
Asa Ben-Hur - 通讯作者:
Asa Ben-Hur
Asa Ben-Hur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Asa Ben-Hur', 18)}}的其他基金
ABI Innovation: DeepStruct: Learning representations of protein 3-d structures and their interfaces using deep architectures
ABI 创新:DeepStruct:使用深层架构学习蛋白质 3-d 结构及其界面的表示
- 批准号:
1564840 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: GOSTRUCT: modeling the structure of the Gene Ontology for accurate protein function prediction
合作研究:GOSTRUCT:对基因本体结构进行建模以实现准确的蛋白质功能预测
- 批准号:
0965768 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PREVALT: Prediction and Validation of Alternative Splicing in Plants
PREVALT:植物选择性剪接的预测和验证
- 批准号:
0743097 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
- 批准号:
2400009 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR Informatics: Accurate assessment of protein-DNA complex models and applications
IIBR 信息学:蛋白质-DNA 复杂模型和应用的准确评估
- 批准号:
2051491 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
- 批准号:
2051283 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR Informatics: Mining Spatial and Single-cell Transcriptomes to Understand Cell Locality and Heterogeneity in Tissues
IIBR 信息学:挖掘空间和单细胞转录组以了解组织中的细胞局部性和异质性
- 批准号:
2042159 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: IIBR Informatics: A reinforced imputation framework for accurate gene expression recovery from single-cell RNA-seq data
EAGER:IIBR 信息学:从单细胞 RNA-seq 数据中准确恢复基因表达的强化插补框架
- 批准号:
1945971 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
- 批准号:
2030604 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Informatics: Keeping up with the genomes - Continual Learning of Metagenomic Data
合作研究:IIBR 信息学:跟上基因组的步伐 - 宏基因组数据的持续学习
- 批准号:
1936782 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR: Informatics: RAPID: Genome-wide Structure and Function Modeling of the SARS-CoV-2 Virus
IIBR:信息学:RAPID:SARS-CoV-2 病毒的全基因组结构和功能建模
- 批准号:
2030790 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR Informatics: An Efficient Pangenomics Graph Aligner
IIBR 信息学:高效的泛基因组图对齐器
- 批准号:
2029552 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIBR Informatics: Unlocking the incredible potential for museum specimens to yield DNA
IIBR 信息学:释放博物馆标本产生 DNA 的巨大潜力
- 批准号:
2029955 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant