ABI Innovation: DeepStruct: Learning representations of protein 3-d structures and their interfaces using deep architectures

ABI 创新:DeepStruct:使用深层架构学习蛋白质 3-d 结构及其界面的表示

基本信息

  • 批准号:
    1564840
  • 负责人:
  • 金额:
    $ 57.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Proteins perform many cellular functions, made possible by complex networks of interactions; knowing the location of the interaction sites on the proteins is key for understanding exactly how they work. Important applications include designing drugs and therapeutic agents. Experimental techniques for determining the interfaces between proteins are expensive and time consuming, so computational structural biologists seek to predict these mathematically. Current prediction methods use a limited number of features hand-crafted by an expert. An alternate approach is to learn the important features directly from all of the data, using a method called deep neural networks. This proposal explores a combined approach: use expert intuition for some features but add the power of unsupervised learning with deep neural networks to learn additional, novel features. The results will enrich the way protein structural features are understood in terms of their functional properties, whether those are catalytic sites, protein-binding sites or other sites important to the protein structure. Certainly in the prediction of protein structure itself machine learning scoring methods are showing great promise. Aspects of the research will be used in courses offered through a recently awarded NSF-NRT training grant, The training grant establishes an interdisciplinary program at the interfaces of biology, engineering, math/statistics and computer science. The program prepares students for a variety of career paths. Research and education experiences will provide students with valuable expertise in a computational area that is highly valued by top technology firms, such as Google and Facebook, which have research teams exploring the possibilities of deep neural networks.This work proposes a paradigm shift in the field of protein interface prediction and scoring: from hand-crafted features and standard off-the-shelf classifiers to an approach that augments existing features with automatic learning of the features that characterize the 3-d structures of proteins, combined with the use of learning algorithms that are specifically designed for the characteristics of the problem. The proposed approach has multiple novel aspects: the proposed learning approach leverages information contained in the entire protein data bank (PDB) to learn features that characterize protein structures at multiple scales and levels of abstraction. It introduces a novel neural network architecture and regularization terms that constrain the solution towards biologically relevant results. The primary alternative to this machine learning-based interface prediction uses docking simulations; however, current docking energy functions are not accurate enough, so that a near-native solution is often not ranked high enough on the list of outcomes to be useful. Extensions of the proposed architectures for interface prediction will be employed for re-scoring docking solutions to improve their predictive success. A workflow that integrates docking and machine learning-based interface prediction and scoring is proposed to explore the synergism between these tasks. Information on the progress made on the project is available through the project website: http://www.cs.colostate.edu/~asa/projects.html.
蛋白质通过复杂的相互作用网络实现许多细胞功能;了解蛋白质上相互作用位点的位置是准确理解它们如何工作的关键。重要的应用包括设计药物和治疗剂。确定蛋白质之间界面的实验技术既昂贵又耗时,因此计算结构生物学家寻求用数学方法来预测这些界面。目前的预测方法使用由专家手工制作的有限数量的特征。另一种方法是使用一种称为深度神经网络的方法,直接从所有数据中学习重要的特征。该提案探索了一种组合方法:对某些特征使用专家直觉,但将深度神经网络的无监督学习功能添加到学习额外的新特征中。这些结果将丰富蛋白质结构特征在其功能特性方面的理解方式,无论是催化位点,蛋白质结合位点还是其他对蛋白质结构重要的位点。当然,在蛋白质结构本身的预测中,机器学习评分方法显示出很大的前景。该研究的部分内容将用于最近获得的NSF-NRT培训资助提供的课程,该培训资助建立了一个跨学科的项目,涉及生物学、工程学、数学/统计学和计算机科学。该项目为学生准备了各种各样的职业道路。研究和教育经历将为学生提供计算领域的宝贵专业知识,这一领域受到b谷歌和Facebook等顶级科技公司的高度重视,这些公司的研究团队正在探索深度神经网络的可能性。这项工作提出了蛋白质界面预测和评分领域的范式转变:从手工制作的特征和标准现成的分类器到一种通过自动学习表征蛋白质三维结构的特征来增强现有特征的方法,并结合使用专门为问题特征设计的学习算法。所提出的方法有多个新颖的方面:所提出的学习方法利用包含在整个蛋白质数据库(PDB)中的信息来学习表征多个尺度和抽象水平的蛋白质结构的特征。它引入了一种新的神经网络架构和正则化术语,约束解决方案向生物学相关的结果。这种基于机器学习的界面预测的主要替代方案使用对接模拟;然而,目前的对接能量函数还不够精确,因此一个接近原生的解决方案在结果列表中的排名往往不够高,无法发挥作用。所提出的接口预测架构的扩展将用于对对接解决方案进行重新评分,以提高其预测成功率。提出了一个集成对接和基于机器学习的界面预测和评分的工作流程,以探索这些任务之间的协同作用。有关项目进展的信息可通过项目网站:http://www.cs.colostate.edu/~asa/projects.html获得。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asa Ben-Hur其他文献

A Support Vector Method for Hierarchical Clustering
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asa Ben-Hur
  • 通讯作者:
    Asa Ben-Hur
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies
使用下一代测序技术解码植物转录组和表观转录组的共/转录后复杂性
  • DOI:
    10.1042/bst20190492
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Anireddy S.N. Reddy;Jie Huang;Naeem H. Syed;Asa Ben-Hur;Suomeng Dong;Lianfeng Gu
  • 通讯作者:
    Lianfeng Gu
Support vector clustering
  • DOI:
    10.4249/scholarpedia.5187
  • 发表时间:
    2008-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asa Ben-Hur
  • 通讯作者:
    Asa Ben-Hur

Asa Ben-Hur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Asa Ben-Hur', 18)}}的其他基金

EAGER: IIBR Informatics: Deep learning tools for the identification of RNA modifications from direct RNA sequencing data
EAGER:IIBR 信息学:用于从直接 RNA 测序数据中识别 RNA 修饰的深度学习工具
  • 批准号:
    1949036
  • 财政年份:
    2020
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Standard Grant
Collaborative Research: GOSTRUCT: modeling the structure of the Gene Ontology for accurate protein function prediction
合作研究:GOSTRUCT:对基因本体结构进行建模以实现准确的蛋白质功能预测
  • 批准号:
    0965768
  • 财政年份:
    2010
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Standard Grant
PREVALT: Prediction and Validation of Alternative Splicing in Plants
PREVALT:植物选择性剪接的预测和验证
  • 批准号:
    0743097
  • 财政年份:
    2008
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Continuing Grant

相似海外基金

Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
  • 批准号:
    10098494
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Collaborative R&D
Innovation through AI
通过人工智能进行创新
  • 批准号:
    10102175
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
  • 批准号:
    ES/Z50239X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
  • 批准号:
    2315247
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Standard Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
  • 批准号:
    2331319
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
  • 批准号:
    2333266
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333684
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Continuing Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
  • 批准号:
    2348780
  • 财政年份:
    2024
  • 资助金额:
    $ 57.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了