Collaborative Research: GOSTRUCT: modeling the structure of the Gene Ontology for accurate protein function prediction

合作研究:GOSTRUCT:对基因本体结构进行建模以实现准确的蛋白质功能预测

基本信息

  • 批准号:
    0965768
  • 负责人:
  • 金额:
    $ 52.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Colorado State University is awarded a grant to develop machine learning methods for predicting protein function. The availability of protein function annotations supports the everyday work of biologists in multiple areas---from biomedical discovery to the study of plant drought resistance, and the design of bacteria useful in biofuel production. Assigning function to proteins in sequenced genomes is a major undertaking, and with new organisms being sequenced daily, experimentally determining the function of all the proteins in those organisms is not practical, requiring computational assignment of function to proteins that have not been studied in the lab. Computational scientists have been considering the problem of function prediction for over two decades. Yet, the basic methodology for protein function prediction has not changed much during this time and remains that of "annotation transfer" from proteins with a known function using a method for sequence comparison such as BLAST. Protein function prediction has several properties that make it difficult to apply state-of-the-art machine learning methods to this problem, such as the large number of potential functions (thousands of possible terms), the fact that proteins can have multiple functions, and the hierarchical relationship between terms in the Gene Ontology (GO), which is the standard system of keywords used to describe protein function. In this work the problem of annotating proteins with GO terms will be explicitly modeled as a hierarchical classification problem using the methodology of "kernel methods for structured outputs", which allows the modeling of complex prediction problems. This methodology will allow the PIs to integrate a variety of genomic information - sequence data, gene expression, protein-protein interactions, and information mined from the biological literature. The award will lead to a function prediction method with state-of-the-art accuracy. The project will have broad impact by providing the GOstruct method to the bioinformatics and biology communities in the form of downloadable software and an online-accessible function prediction server. Education will be impacted through the incorporation of the tool into new courses in programming for biologists and on kernel methods.
Colorado State University is awarded a grant to develop machine learning methods for predicting protein function. The availability of protein function annotations supports the everyday work of biologists in multiple areas---from biomedical discovery to the study of plant drought resistance, and the design of bacteria useful in biofuel production. Assigning function to proteins in sequenced genomes is a major undertaking, and with new organisms being sequenced daily, experimentally determining the function of all the proteins in those organisms is not practical, requiring computational assignment of function to proteins that have not been studied in the lab. Computational scientists have been considering the problem of function prediction for over two decades. Yet, the basic methodology for protein function prediction has not changed much during this time and remains that of "annotation transfer" from proteins with a known function using a method for sequence comparison such as BLAST. Protein function prediction has several properties that make it difficult to apply state-of-the-art machine learning methods to this problem, such as the large number of potential functions (thousands of possible terms), the fact that proteins can have multiple functions, and the hierarchical relationship between terms in the Gene Ontology (GO), which is the standard system of keywords used to describe protein function. In this work the problem of annotating proteins with GO terms will be explicitly modeled as a hierarchical classification problem using the methodology of "kernel methods for structured outputs", which allows the modeling of complex prediction problems. This methodology will allow the PIs to integrate a variety of genomic information - sequence data, gene expression, protein-protein interactions, and information mined from the biological literature. The award will lead to a function prediction method with state-of-the-art accuracy. The project will have broad impact by providing the GOstruct method to the bioinformatics and biology communities in the form of downloadable software and an online-accessible function prediction server. Education will be impacted through the incorporation of the tool into new courses in programming for biologists and on kernel methods.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asa Ben-Hur其他文献

A Support Vector Method for Hierarchical Clustering
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asa Ben-Hur
  • 通讯作者:
    Asa Ben-Hur
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies
使用下一代测序技术解码植物转录组和表观转录组的共/转录后复杂性
  • DOI:
    10.1042/bst20190492
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Anireddy S.N. Reddy;Jie Huang;Naeem H. Syed;Asa Ben-Hur;Suomeng Dong;Lianfeng Gu
  • 通讯作者:
    Lianfeng Gu
Support vector clustering
  • DOI:
    10.4249/scholarpedia.5187
  • 发表时间:
    2008-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asa Ben-Hur
  • 通讯作者:
    Asa Ben-Hur

Asa Ben-Hur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Asa Ben-Hur', 18)}}的其他基金

EAGER: IIBR Informatics: Deep learning tools for the identification of RNA modifications from direct RNA sequencing data
EAGER:IIBR 信息学:用于从直接 RNA 测序数据中识别 RNA 修饰的深度学习工具
  • 批准号:
    1949036
  • 财政年份:
    2020
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Standard Grant
ABI Innovation: DeepStruct: Learning representations of protein 3-d structures and their interfaces using deep architectures
ABI 创新:DeepStruct:使用深层架构学习蛋白质 3-d 结构及其界面的表示
  • 批准号:
    1564840
  • 财政年份:
    2016
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Standard Grant
PREVALT: Prediction and Validation of Alternative Splicing in Plants
PREVALT:植物选择性剪接的预测和验证
  • 批准号:
    0743097
  • 财政年份:
    2008
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.33万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了