CAREER: Geometric and Topological Methods in Shape Analysis, with Applications in Molecular Biology

职业:形状分析中的几何和拓扑方法及其在分子生物学中的应用

基本信息

项目摘要

Shape analysis, in particular shape characterization and matching, is a fundamental problem appearing in a broad range of research fields. In particular, in molecular biology, it is generally believed that the functionalities of proteins are largely determined by their three dimensional structures. Hence understanding molecular functionality, a task essential to fundamental biological problems such as protein folding and drug design, depends on precise analysis of molecular structures. However, while much success has been achieved in molecular sequence analysis, success on the structural side is more limited, to a large degree due to a lack of accurate and efficient characterization and matching algorithms. To address these challenges, this project focuses on shape characterization and matching using geometric and topological methods, with driving applications coming from molecular shape analysis. The geometric shapes investigated in this project include not only standard objects such as curves and surfaces, but also other complex shapes, such as the union-of-balls representation. The project studies a broad range of fundamental issues involved in their analysis, such as comparing multiple shapes, efficient searching in structural databases, matching with flexibility, and developing mathematically justified methods to describe features for both static and deformed shapes. It investigates the mathematical structure behind these problems, and develops practical algorithms that are also theoretically sound. The main tools involved in this research are computational geometry and computational topology, which form a natural platform for analyzing shapes. Finally, by developing effective computational frameworks for manipulating and processing various geometric shapes, this project provides an important step towards large-scale molecular structural analysis, which is essential to understanding life at the molecular level. At the same time, this multi-disciplinary project helps to broaden the scope of theoretically sound computational methods for real-life problems, as well as to further bridge computer science, mathematics, and structural biology.
形状分析,尤其是形状的表征和匹配,是出现在广泛研究领域中的一个基本问题。尤其在分子生物学中,人们普遍认为蛋白质的功能在很大程度上是由其三维结构决定的。因此,了解分子功能是一项对蛋白质折叠和药物设计等基本生物学问题至关重要的任务,依赖于对分子结构的精确分析。然而,尽管在分子序列分析方面已经取得了很大的成功,但在结构方面的成功却更加有限,这在很大程度上是由于缺乏准确和有效的表征和匹配算法。为了应对这些挑战,该项目专注于使用几何和拓扑方法进行形状表征和匹配,其驱动应用来自分子形状分析。本项目中研究的几何形状不仅包括曲线、曲面等标准对象,还包括其他复杂形状,如球并表示。该项目研究了它们分析中涉及的广泛的基本问题,例如比较多个形状、在结构数据库中的有效搜索、与灵活性的匹配,以及开发数学上合理的方法来描述静态和变形形状的特征。它研究了这些问题背后的数学结构,并开发了理论上也是合理的实用算法。本研究涉及的主要工具是计算几何和计算拓扑学,它们构成了分析形状的天然平台。最后,通过开发有效的计算框架来操纵和处理各种几何形状,该项目向大规模分子结构分析迈出了重要的一步,这是在分子水平上理解生命所必需的。同时,这个多学科的项目有助于拓宽现实问题理论上合理的计算方法的范围,并进一步架起计算机科学、数学和结构生物学的桥梁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yusu Wang其他文献

Measuring Distance between Reeb Graphs
测量 Reeb 图之间的距离
Local Versus Global Distances for Zigzag and Multi-Parameter Persistence Modules
Zigzag 和多参数持久性模块的本地距离与全局距离
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellen Gasparovic;Maria Gommel;Emilie Purvine;R. Sazdanovic;Bei Wang;Yusu Wang;Lori Ziegelmeier
  • 通讯作者:
    Lori Ziegelmeier
Shape fitting with outliers
与异常值进行形状拟合
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sariel Har;Yusu Wang
  • 通讯作者:
    Yusu Wang
Approximating nearest neighbor among triangles in convex position
近似凸位置三角形之间的最近邻
Towards topological methods for complex scalar data
复杂标量数据的拓扑方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yusu Wang;Issam Safa
  • 通讯作者:
    Issam Safa

Yusu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yusu Wang', 18)}}的其他基金

Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310411
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
AI Institute for Learning-Enabled Optimization at Scale (TILOS)
AI 大规模学习优化研究所 (TILOS)
  • 批准号:
    2112665
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Cooperative Agreement
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2039794
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940125
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733798
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research:Geometric and topological algorithms for analyzing road network data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
  • 批准号:
    1618247
  • 财政年份:
    2016
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
AF: Small: Analyzing Complex Data with a Topological Lens
AF:小:用拓扑透镜分析复杂数据
  • 批准号:
    1526513
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms and Topological Graph Theory
AF:小:近似算法和拓扑图论
  • 批准号:
    1423230
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Data Processing and Analysis via Light-weight Structures
AF:小型:通过轻量结构进行几何数据处理和分析
  • 批准号:
    1319406
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
  • 批准号:
    2338492
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
  • 批准号:
    23K11020
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-gap topological physics: from a new geometric perspective to materials
多间隙拓扑物理:从新的几何视角看材料
  • 批准号:
    EP/X025829/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
  • 批准号:
    2237288
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
  • 批准号:
    2151934
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133851
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
  • 批准号:
    EP/V032003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133822
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CDS&E: Extracting Physics from High-Fidelity Simulations of Atomization using Geometric and Topological Data Analysis
CDS
  • 批准号:
    2152737
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了