CAREER: Analysis and Modeling for Image Processing Problems
职业:图像处理问题的分析和建模
基本信息
- 批准号:0748333
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator, together with his students and collaborators, will tackle important analytical and computational problems from image processing and computer vision that arise also in a variety of other fields, such as computer graphics, population dynamics, and materials science. A significant analytical component of the research program will focus on better understanding the coarsening phenomena observed in ill-posed diffusion equations that are encountered in such disparate fields as image processing (where they appear in models of image segmentation), granular flow (where they describe the formation of shear bands in granular materials), and population dynamics (where they model aggregation of certain types of bacteria). A second component of the research program will develop novel numerical algorithms for efficient computation of the motion of multiple phases under geometric motions arising as steepest descent for energies that contain bulk and surface tension terms. These interfacial motions are frequently encountered not only in fundamental image processing and vision procedures such as image segmentation, but also in materials science where they can describe grain boundary motion in polycrystalline materials. A number of numerical ideas will be utilized in this direction, including the level set method and some novel alternatives to it. The algorithms will be tested on large scale computations of high scientific interest, such as three dimensional simulations of grain growth in materials, using many grains. In addition, the investigator will continue his research program in extending successful image processing models to the context of surface processing in computer graphics.The image processing and computer vision tasks that will be impacted by results from this research program include image denoising and segmentation, which are fundamental preliminary operations that are needed whenever useful information is to be extracted from images or video automatically. The goal of image denoising is to remove artifacts and noise from images so that subsequent operations can be performed more reliably. The goal of segmentation is to identify parts of an image occupied by distinct objects. Examples of practical applications where these procedures play a primary role include medical imaging, face recognition, and target identification and tracking. Insights gained from the analytical component of this research program will elucidate the nature of some of the most popular but incompletely understood techniques developed for these vision tasks, and consequently allow more effective use of these techniques. The new computational methods that will be developed as a major part of the project will allow efficient and accurate solution of the numerical problems encountered in these computer vision applications, and thus reduce the computer time needed for knowledge extraction from images and video. The numerical issues from computer vision that will be targeted by this research program have a lot in common with numerical issues seen in some central problems in materials science. This connection will in particular make it possible to apply the new computational methods to large scale simulations of the motion of grain boundaries in materials; this computational capability is highly desirable and would be invaluable in predicting the performance and reliability of materials.
这位研究人员将与他的学生和合作者一起,解决图像处理和计算机视觉中的重要分析和计算问题,这些问题也出现在其他各种领域,如计算机图形学、人口动力学和材料科学。该研究计划的一个重要分析部分将侧重于更好地理解在不适定扩散方程中观察到的粗化现象,这些粗化现象在图像处理(在图像分割模型中出现)、颗粒流(它们描述颗粒材料中剪切带的形成)和种群动力学(它们对某些类型的细菌的聚集进行建模)等不同领域中遇到。研究计划的第二部分将开发新的数值算法,用于有效计算几何运动下的多相运动,几何运动是包含体积和表面张力项的能量的最陡峭下降。这些界面运动不仅在基本的图像处理和图像分割等视觉过程中经常遇到,而且在材料科学中也经常遇到,在材料科学中它们可以描述多晶材料中的晶界运动。在这个方向上将使用一些数值思想,包括水平集方法和它的一些新的替代方法。这些算法将在具有高度科学意义的大规模计算中进行测试,例如使用许多颗粒对材料中的颗粒生长进行三维模拟。此外,研究人员还将继续他的研究计划,将成功的图像处理模型扩展到计算机图形学中的表面处理。受该研究计划的结果影响的图像处理和计算机视觉任务包括图像去噪和分割,这是当从图像或视频中自动提取有用信息时需要的基本初步操作。图像去噪的目的是去除图像中的伪影和噪声,以便更可靠地执行后续操作。分割的目标是识别图像中被不同对象占据的部分。这些程序起主要作用的实际应用的例子包括医学成像、人脸识别以及目标识别和跟踪。从本研究计划的分析部分获得的见解将阐明为这些视觉任务开发的一些最受欢迎但不完全理解的技术的性质,从而允许更有效地使用这些技术。将作为该项目的一个主要部分开发的新计算方法将能够有效和准确地解决在这些计算机视觉应用中遇到的数值问题,从而减少从图像和视频中提取知识所需的计算机时间。这项研究计划的目标是计算机视觉中的数值问题,这些问题与材料科学中的一些核心问题中的数值问题有许多相似之处。这种联系将使新的计算方法有可能应用于材料中晶界运动的大规模模拟;这种计算能力是非常可取的,在预测材料的性能和可靠性方面将是无价的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Selim Esedoglu其他文献
Selim Esedoglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Selim Esedoglu', 18)}}的其他基金
High Order Schemes for Gradient Flows and Interfacial Motion
梯度流和界面运动的高阶方案
- 批准号:
2012015 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Computational Tools for Polycrystalline Materials
多晶材料的计算工具
- 批准号:
1719727 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
- 批准号:
0914567 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
New Models and Algorithms in Image Processing with Partial Differential Equations
偏微分方程图像处理的新模型和算法
- 批准号:
0713767 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Geometric and Multiscale Aspects of Image Denoising Models
图像去噪模型的几何和多尺度方面
- 批准号:
0605714 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Geometric and Multiscale Aspects of Image Denoising Models
图像去噪模型的几何和多尺度方面
- 批准号:
0410085 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Multi-Timescale Dynamics Modeling, Simulation, and Analysis of Converter-Dominated Power Systems
职业:以转换器为主导的电力系统的多时间尺度动态建模、仿真和分析
- 批准号:
2339148 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Modeling, Optimization, and Equilibrium Formulations for the Analysis and Design of Circular Economy Networks
职业:循环经济网络分析和设计的建模、优化和平衡公式
- 批准号:
2339068 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Data-Driven and Field-Validated Microgrid Modeling and Analysis Techniques
职业:迈向数据驱动和现场验证的微电网建模和分析技术
- 批准号:
2237886 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Multiphysics Framework for Modeling, Analysis, and Experimentation of Power Systems and Power Electronics
职业:电力系统和电力电子建模、分析和实验的多物理场框架
- 批准号:
2314415 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Multiphysics Framework for Modeling, Analysis, and Experimentation of Power Systems and Power Electronics
职业:电力系统和电力电子建模、分析和实验的多物理场框架
- 批准号:
2143222 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Advancing Latent Variable Statistical Modeling for the Analysis of Big and Complex Longitudinal Data to Promote Personalized Learning
职业:推进潜变量统计模型分析大而复杂的纵向数据以促进个性化学习
- 批准号:
1848451 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Real-World Networks: Modeling and Analysis of Signed Networks with Positive and Negative Links
职业:现实世界网络:具有正向和负向链接的签名网络的建模和分析
- 批准号:
1845081 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Scalable Optimization-Based Framework for Modeling and Analysis of Cascading Failures
职业生涯:基于优化的可扩展框架,用于级联故障建模和分析
- 批准号:
1750531 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Virus Infection and Immune Responses: Modeling, Analysis, and Implications
职业:病毒感染和免疫反应:建模、分析和影响
- 批准号:
1758290 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: The restricted nonlinear framework: A new paradigm for modeling, analysis and control of wall-bounded turbulent flows
职业:受限非线性框架:壁面湍流建模、分析和控制的新范式
- 批准号:
1652244 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant