Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection

合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法

基本信息

项目摘要

This proposal introduces a class of novel inverse problems with applications to, and motivated by anti-terrorism efforts, such as surveillance and discovery of harmful comtamination sources in unknown battle fields as well as urban regions. Unlike the typical settings of a large class of inverse problems, the research involves inverting Radon transforms from very sparse samples and constraints involving parttial differential equations. These considerations present interesting challenges in both mathematical analysis and modeling as well as in the design and implementation of appropriate computational methods. In addition, this proposal introduces novel strategies which greatly reduce the complexity for the inversion. State-of-the-art numerical techniques that have been in development by the PI and his collaborators, such as the use of Bregman iteration in imaging and compressed sensing and inverse problem applications will be central in meeting these challenges. This research has immediate and direct implications for anti- terrorism efforts, such as surveillance and discovery of harmful contamination sources in unknown battlefields as well as urban regions. A desired capability is to reconstruct and predict the whereabouts and the extent of an offending chemical and/or biological cloud from passive, remote measurements from an array of sensors. A very limited number of stationary or moving sensors receive and record infrared radiation from the scene containing the cloud (plume) in addition to the radiation from other elements in the scene, such as the background and intervening atmosphere. The sensors are assumed to be able to resolve the spectrum of the receivedtotal radiation and the spectral signatures of chemicals of interest may be known. This research will help to move the sensors to optimal locations, to detect the locations and contents of thesources, to predict the plumes' behavior and ultimately to minimize the damage caused by such events.
该建议介绍了一类新的反问题的应用程序,并出于反恐工作,如在未知的战场以及城市地区的有害污染源的监测和发现。与一大类反问题的典型设置不同,该研究涉及从非常稀疏的样本和涉及偏微分方程的约束中反演Radon变换。这些考虑在数学分析和建模以及适当的计算方法的设计和实现中提出了有趣的挑战。此外,该建议引入了新的策略,大大降低了反演的复杂性。PI及其合作者开发的最先进的数值技术,例如在成像和压缩传感以及逆问题应用中使用Bregman迭代,将成为应对这些挑战的核心。这项研究对反恐工作有直接和直接的影响,例如在未知的战场以及城市地区监视和发现有害污染源。一种期望的能力是根据来自传感器阵列的被动远程测量来重建和预测侵入性化学和/或生物云的位置和范围。只有数量非常有限的固定或移动传感器接收和记录来自包含云(羽流)的场景的红外辐射,以及来自场景中其他元素(如背景和干预大气)的辐射。假定传感器能够分辨接收到的总辐射的光谱,并且可能已知感兴趣的化学品的光谱特征。这项研究将有助于将传感器移动到最佳位置,检测源的位置和内容,预测羽流的行为,并最终最大限度地减少此类事件造成的损害。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Selim Esedoglu其他文献

Selim Esedoglu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Selim Esedoglu', 18)}}的其他基金

High Order Schemes for Gradient Flows and Interfacial Motion
梯度流和界面运动的高阶方案
  • 批准号:
    2012015
  • 财政年份:
    2020
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Computational Tools for Polycrystalline Materials
多晶材料的计算工具
  • 批准号:
    1719727
  • 财政年份:
    2017
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Algorithms for Multiple Phases
多阶段算法
  • 批准号:
    1317730
  • 财政年份:
    2013
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Continuing Grant
CAREER: Analysis and Modeling for Image Processing Problems
职业:图像处理问题的分析和建模
  • 批准号:
    0748333
  • 财政年份:
    2008
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
New Models and Algorithms in Image Processing with Partial Differential Equations
偏微分方程图像处理的新模型和算法
  • 批准号:
    0713767
  • 财政年份:
    2007
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Geometric and Multiscale Aspects of Image Denoising Models
图像去噪模型的几何和多尺度方面
  • 批准号:
    0605714
  • 财政年份:
    2005
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Geometric and Multiscale Aspects of Image Denoising Models
图像去噪模型的几何和多尺度方面
  • 批准号:
    0410085
  • 财政年份:
    2004
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 23.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了