SCoReViS: Scalable Collaborative and Remote Visualization Software
SCoReViS:可扩展的协作和远程可视化软件
基本信息
- 批准号:0751397
- 负责人:
- 金额:$ 88.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SCoReViS: Scalable Collaborative and Remote Visualization SoftwarePI: Kelly Gaither, University of Texas at AustinThis project addresses what is fast becoming the most common, most severe bottleneck in high-end computational science: the inability of users to analyze their data in real time because of the limitations of their local systems and limited network bandwidth that cannot support transfer of tremendous data sets. The project will bring data analysis and visualization capability in line with HPC modeling and simulation capability to enable new kinds of interaction, increasing the likelihood of discovery. The Challenge: Scientific visualization is a fundamental data analysis technique for simulation-based research. Through 2-D and 3-D images, scientific visualization helps scientists explore, make sense of, and communicate data, whether it is modeling a hurricane, tracing the arterial blood flow of a heart, or exploring a super massive black hole. However, high performance computing (HPC) systems capabilities are racing far ahead of users' ability to effectively visualize the data they produce. As petaflop systems produce simulation output of unprecedented scale, it is becoming unfeasible to move these enormous data sets over networks to visualization systems and to use special-purpose visualization systems to interact with them. To fully achieve the scientific impact of these costly tera-and petascale systems, we need to improve the visualization capabilities for high end users. As with HPC, this requires scalable visualization tools that aggregate the capabilities of many compute nodes, while rendering the data close to the source to eliminate costly network transfers. This requires remote visualization interfaces to these large-scale visualization systems, enabling remote users to work interactively with their data.The Solution: The development of the Scalable Collaborative and Remote Visualization Software (SCoReViS) is a direct response to the need for next-generation visualization tools for large-scale HPC platforms and dedicated graphics clusters. SCoReViS will:o Leverage the computational power of tera- and petascale HPC and large GPU-based graphics clusters, and scale seamlessly from the largest available platforms down to smaller systems deployed at scientists' local institutions;o Maximize the investments in large-scale systems by providing remote and collaborative access to visualization tools, making them available and effective for any researcher with a reasonably high-bandwidth network connection (e.g. consumer broadband service); o Provide general purpose visualization capabilities by supporting any software based on the standard OpenGL API, thus enabling most popular visualization applications; ando Create a platform of tools for scientists who compute at the largest scale and to promote the development of tools to address issues associated with large, time-dependent data sets. The key components will be assembled, optimized, packaged and supported to provide high performance, scalable remote/collaborative visualization on petascale HPC and graphics clusters.Impact: The potential impact of this project is immeasurable. The resulting software will be made available via open source licensing, enabling use by anyone with access to the TeraGrid, including diverse scientific disciplines. The remote and collaborative visualization capabilities enabled by SCoReViS will allow access by a broader community of researchers, increasing the ability of high performance computing (HPC) to address the largest problems facing us.
ScoreVIS:可扩展的合作和远程可视化软件:凯利·盖瑟(Kelly Gaither),德克萨斯大学奥斯汀大学项目的凯利·盖瑟(Kelly Gaither)解决了高端计算科学中最常见,最严重的瓶颈的迅速发展:由于无法实时分析其数据的本地系统和限制网络频段的限制,因此无法实时分析其数据,因此无法支持巨大的数据集。该项目将根据HPC建模和仿真能力一致地带来数据分析和可视化功能,以实现新型的相互作用,从而增加了发现的可能性。挑战:科学可视化是基于模拟研究的基本数据分析技术。通过2-D和3-D图像,科学可视化有助于科学家探索,了解和传达数据,无论是在建模飓风,追踪心脏的动脉血流还是探索超大的黑洞。 但是,高性能计算(HPC)系统功能远远超出了用户有效地可视化其产生数据的能力。随着PETAFLOP系统产生前所未有的量表的模拟输出,将这些庞大的数据集通过网络移动到可视化系统并使用特殊用途的可视化系统与它们进行交互变得不可行。为了充分实现这些昂贵的TERA和PETASCALE系统的科学影响,我们需要提高最终用户的可视化功能。与HPC一样,这需要可扩展的可视化工具来汇总许多计算节点的功能,同时将数据渲染到靠近源以消除昂贵的网络传输。这需要远程可视化接口到这些大规模可视化系统,使远程用户能够与其数据进行交互式工作。解决方案:可扩展协作和远程可视化软件(ScoreVIS)的开发是对大型HPC平台的下一代可视化工具的需求的直接响应。 SCOREVIS将:o利用TERA和PETASCALE HPC的计算能力以及大型基于GPU的图形簇,并从最大的可用平台到位于科学家本地机构部署的较小的系统中无缝地扩展; o最大程度地提高与可视化工具的远程和协作工具,可在大型系统中提供可用的工具,并有效地连接(有效地),并有效地(可提供),并有效地连接(有效)(有效)(有效)(有效)(有效)(有效地)宽带服务); o通过支持基于标准OpenGL API的任何软件,提供通用可视化功能,从而实现最流行的可视化应用程序;安多(Ando)为科学家创建了一个工具平台,这些科学家以最大的规模计算并促进工具开发以解决与大型,时间有关的数据集相关的问题。关键组件将得到组装,优化,包装和支持,以在Petascale HPC和Graphics簇上提供高性能,可扩展的远程/协作可视化。Impact:该项目的潜在影响是不可估量的。所得软件将通过开源许可提供,从而可以使用访问Teragrid的任何人,包括各种科学学科。 ScoreVis实现的远程和协作可视化功能将允许更广泛的研究人员访问,从而提高了高性能计算(HPC)解决我们面临的最大问题的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly Gaither其他文献
ICASE/LaRC Symposium on Visualizing Time-Varying Data
ICASE/LaRC 时变数据可视化研讨会
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
D. Banks;T. Crockett;K. Stacy;bullet Hampton;Virginia K Stacy;N. Max;B. Becker;D. Banks;Mississippi;T. Crockett;Kathy Stacy;D. Banks;K. Stacy;Mary Adams;T. Crockett;Kwan;K. Severance;Lambertus Hesselink;R. Crawfis;Lawrence;Chuck Hansen;Duane Melson;L. Treinish;R. Haimes;Massachusetts;N. Max;Velvin Watson;Randy L. Ribler;Anup Mathur;Marc Abrams;Pak Chnng Wong;R. D. Bergeron;Will H Scullin;T. T. Kwan;Daniel A Reed;Eric J Davies;William B Cowan;B. Becket;Vineet Goel;Amar Mukherjee;R. Moorhead;Zhifan Zhu;Kelly Gaither;John Vanderzwagg;Tzi;William Mattson;Rick Angelini;Larry Matthias;Paula Detweiler;James Patten;G. Erlebacher;Richard J Schwartz;T. Crockett;William J Bent;R. Wilmoth;Bart A Singer;Patricia J. Crossno;M. Cheng;M. Livny;R. Ramakrishnan;Will Bene;Bart A Singer - 通讯作者:
Bart A Singer
Kelly Gaither的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly Gaither', 18)}}的其他基金
Collaborative Research: NSF INCLUDES Alliance: Alliance Supporting Pacific Impact through Computational Excellence (ALL-SPICE)
合作研究:NSF 包括联盟:通过卓越计算支持太平洋影响力联盟 (ALL-SPICE)
- 批准号:
2217227 - 财政年份:2022
- 资助金额:
$ 88.07万 - 项目类别:
Cooperative Agreement
SCH: INT: Individualizing Care in Pregnancy and Childbirth through Digital Phenotyping
SCH:INT:通过数字表型分析实现妊娠和分娩的个性化护理
- 批准号:
1838901 - 财政年份:2018
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
NSF INCLUDES DDLP: SPICE (Supporting Pacific Indigenous Computing Excellence) Data Science Program for Native Hawaiians and Pacific Islanders
NSF 包括 DDLP:针对夏威夷原住民和太平洋岛民的 SPICE(支持太平洋本土计算卓越)数据科学计划
- 批准号:
1744526 - 财政年份:2017
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
Enabling Transformational Science and Engineering Through Integrated Collaborative Visualization and Data Analysis for the National User Community
通过集成协作可视化和数据分析为全国用户社区实现变革性科学与工程
- 批准号:
0906379 - 财政年份:2009
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
The Future of Data Analysis and Visualization as a Knowledge Discovery Tool in Science and Engineering
数据分析和可视化作为科学和工程知识发现工具的未来
- 批准号:
0751267 - 财政年份:2007
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
- 批准号:62335019
- 批准年份:2023
- 资助金额:225.00 万元
- 项目类别:重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant