Collaborative Research: Direct Estimation of Topographic Form Drag from Seafloor pressure Measurement

合作研究:通过海底压力测量直接估计地形阻力

基本信息

  • 批准号:
    0751930
  • 负责人:
  • 金额:
    $ 80.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The importance of topographic form drag to atmospheric circulation has long been recognized. It has been examined in detail via field experiments, laboratory, numerical and theoretical studies. Significantly, it has been directly measured by high-resolution pressure sensors deployed across mountain ranges, the critical topographic elements in the atmosphere. These direct measurements have provided the important link allowing detection/prediction of high drag states from established synoptic weather stations. Mountain drag parameterizations are now incorporated in numerical models of atmospheric circulation. It has been long thought that form drag is important to oceanic flows, as well. In particular, the Antarctic Circumpolar Current may be largely controlled by form drag. Coastal flows in which rapidly-flowing jets or barotropic tidal currents pass over varying topography are prime candidates for developing high drag states. Yet form drag is not incorporated in either global or coastal circulation models. Rather, the effects of unresolved bottom interactions are typically included in the form of quadratic drag laws, despite the fact that during high drag states, bottom friction is known to be a small component of total drag, as has been observed over coastal ocean topographic features. Part of the reason for not recognizing the importance of form drag to ocean circulation has been our inability to clearly document variations in time, space and form of high drag states. In turn this has impeded a first-order understanding of these phenomena. Intellectual Merit: Oceanic time scales are longer and spatial scales shorter than atmospheric. Hence, comprehensive and synoptic measurements of the physical processes leading to form drag in oceanic flows can be more easily obtained. The understanding gained in interpreting these measurements will contribute to our understanding of geophysical high drag flow in general.The investigators have recently demonstrated a new measurement that permits detection of the seafloor pressure signal of nonlinear internal waves and propose to implement this measurement in a manner analogous to surface pressure measurements across mountain ranges to determine the form of high drag states across a small, relatively two-dimensional coastal bump, temporal variability of the total drag and relationship to the large-scale flow; and the effectiveness of employing this measurement at other critical ocean sites. The project will include initial testing of the pressure sensor and a pilot project where moored and intensive profiling measurements will provide synoptic water column density and velocity measurements to supplement those from a seafloor pressure sensor array. From these observations and complementary modeling efforts, Froude number-based parameterizations will be proposed for testing in coastal circulation models. Broader Impact: Mountain drag produces a recognized and critical influence on atmospheric circulation and must be parameterized in global circulation models. Lack of inclusion in ocean circulation models may be an oversight. Identification of its oceanic influence (or lack thereof) seems long overdue. A simple and easily-deployed measurement that will allow long time series of pressure drag at various critical global locations will help to identify its magnitude and variability. Training in state-of-the-art ocean modeling will be provided to a graduate student.
地形形状阻力对大气环流的重要性早已被认识。它已通过现场实验,实验室,数值和理论研究进行了详细的检查。重要的是,它是由部署在山脉的高分辨率压力传感器直接测量的,山脉是大气中的关键地形要素。这些直接测量提供了重要的联系,允许从已建立的天气站检测/预测高阻力状态。山区阻力参数化现在被纳入大气环流的数值模式。 长期以来,人们一直认为形状阻力对海洋流动也很重要。特别是,南极绕极流可能在很大程度上由形状阻力控制。快速流动的急流或正压潮流经过不同地形的海岸流是发展高阻力状态的主要候选者。然而,形状阻力没有纳入全球或沿海环流模式。相反,未解决的海底相互作用的影响通常以二次阻力定律的形式包括在内,尽管在高阻力状态下,海底摩擦已知是总阻力的一个小组成部分,正如在沿海海洋地形特征上观察到的那样。 没有认识到形状阻力对海洋环流的重要性的部分原因是我们无法清楚地记录高阻力状态在时间、空间和形状上的变化。这反过来又阻碍了对这些现象的一阶理解。 智力优势:海洋的时间尺度比大气的长,空间尺度比大气的短。因此,可以更容易地获得导致海洋流中形状阻力的物理过程的全面和天气测量。在解释这些测量中获得的理解将有助于我们对地球物理高阻力流的一般理解。研究人员最近演示了一种新的测量方法,可以检测非线性内波的海底压力信号,并建议以类似于跨越山脉的表面压力测量的方式实施这种测量,以确定跨越小的,相对二维的海岸颠簸,总阻力的时间变化和与大规模流动的关系;以及在其他关键海洋站点采用这种测量的有效性。该项目将包括对压力传感器的初步测试和一个试点项目,其中系泊和密集剖面测量将提供天气水柱密度和速度测量,以补充海底压力传感器阵列的测量。从这些观测和补充建模的努力,弗劳德数为基础的参数化将提出在沿海环流模式的测试。 更广泛的影响:山脉阻力对大气环流产生公认的关键影响,必须在全球环流模式中进行参数化。海洋环流模型中缺乏包括可能是一个疏忽。对它的海洋影响(或缺乏影响)的识别似乎早就应该了。一个简单和易于部署的测量,将允许在全球各个关键位置的压力阻力的长时间序列将有助于确定其大小和可变性。 将向一名研究生提供最先进的海洋建模培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Moum其他文献

BLOCKED DRAINPIPES AND SMOKING CHIMNEYS DISCOVERY OF NEW NEAR-INERTIAL WAVE PHENOMENA IN ANTICYCLONES
堵塞的排水管和冒烟的烟囱在反气旋中发现新的近惯性波现象
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leif Thomas;James Moum;Lixin Qu;J. P. Hilditch;Eric Kunze;Luc Rainville;Craig M. Lee;USA. Lixin Qu
  • 通讯作者:
    USA. Lixin Qu
Near-Inertial Energy Variability in a Strong Mesoscale Eddy Field in the Iceland Basin
冰岛盆地强中尺度涡流场中的近惯性能量变率
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Gunnar Voet;A. Waterhouse;Anna C. Savage;Eric Kunze;Jennifer A. MacKinnon;Matthew H. Alford;John Colosi;Harper Simmons;T. Klenz;Samuel Kelly;James Moum;Caitlin B. Whalen;R. Lien;J. Girton
  • 通讯作者:
    J. Girton

James Moum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Moum', 18)}}的其他基金

Collaborative Research: Evaluating mechanisms for enhanced mixing below tropical instability waves
合作研究:评估热带不稳定波下方增强混合的机制
  • 批准号:
    2049145
  • 财政年份:
    2021
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cold Tongue Mixing
合作研究:冷舌混合
  • 批准号:
    2048631
  • 财政年份:
    2021
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Mixing in the Equatorial Atlantic's Cold Tongue- Chipods on PIRATA Moorings
混入赤道大西洋的冷舌——PIRATA 系泊处的 Chipods
  • 批准号:
    1431518
  • 财政年份:
    2014
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Mixing Across the Pacific Equatorial Cold Tongue
跨越太平洋混搭赤道冷舌
  • 批准号:
    1256620
  • 财政年份:
    2013
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
DYNAmics of the Madden-Julian Oscillation / DYNAMO Subsurface Fluxes
Madden-Julian 振荡动力学 / DYNAMO 地下通量
  • 批准号:
    1059055
  • 财政年份:
    2011
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DYNAmics of the Madden Julian Oscillation/DYNAMO Mooring
合作研究:Madden Julian Oscillation/DYNAMO Mooring 的动力学
  • 批准号:
    1029265
  • 财政年份:
    2010
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Equatorial Internal Gravity Wave Shear, Strain, Instabilities and Mixing--A Moored Process Study
合作研究:赤道内重力波剪切、应变、不稳定性和混合——停泊过程研究
  • 批准号:
    0728375
  • 财政年份:
    2007
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Small-Scale Processes in the COASTal Ocean
沿海海洋的小规模过程
  • 批准号:
    0549836
  • 财政年份:
    2006
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Moored Mixing Measurements at the Equator
赤道上的系泊混合测量
  • 批准号:
    0424133
  • 财政年份:
    2004
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Hawaii Ocean Mixing Experiment: Nearfield Program: Abyssal Mixing
夏威夷海洋混合实验:近场计划:深渊混合
  • 批准号:
    9819531
  • 财政年份:
    2001
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349884
  • 财政年份:
    2024
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Co-Design of Shape and Fabrication Plans for Direct-Ink Write Printing Through Predictive Simulation
合作研究:HCC:中:通过预测模拟共同设计直接墨水书写打印的形状和制造计划
  • 批准号:
    2212048
  • 财政年份:
    2022
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Surface-specific Aerosol Chemistry: Direct Observations, Kinetics, and Environmental Impact
合作研究:表面特定气溶胶化学:直接观察、动力学和环境影响
  • 批准号:
    2203983
  • 财政年份:
    2022
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Surface-specific Aerosol Chemistry: Direct Observations, Kinetics, and Environmental Impact
合作研究:表面特定气溶胶化学:直接观察、动力学和环境影响
  • 批准号:
    2203982
  • 财政年份:
    2022
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
Collaborative Research: RECODE: Microfluidic and genetic technologies to direct and select retinal cell types from human induced pluripotent stem cell-derived retinal organoids
合作研究:RECODE:微流体和遗传技术从人类诱导多能干细胞衍生的视网膜类器官中指导和选择视网膜细胞类型
  • 批准号:
    2225488
  • 财政年份:
    2022
  • 资助金额:
    $ 80.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了