FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation

FRG:合作研究:量子自旋系统。

基本信息

  • 批准号:
    0757581
  • 负责人:
  • 金额:
    $ 39.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This award supports the work of a group of seven researchers, Sergey Bravyi, Matthew Hastings, Bruno Nachtergaele, Robert Sims, Shannon Starr, Barbara Terhal, and Horng-Tzer Yau, on three clusters of problems in the mathematical theory of quantum spin systems. The first cluster, locality and Lieb-Robinson bounds, spin diffusion, and large-spin asymptotics, is aimed at improving understanding of quantum lattice dynamics. The second cluster focuses on ground state properties: area laws for the local entropy and entanglement, the spectral gap above the ground state and its relation with the behavior of correlation functions, and the quality of approximation of ground states by matrix product states. The third cluster contains a number of questions in computational complexity theory: computational complexity classes, QMA-completeness, the connection between gapped Hamiltonians and complexity, and the computational power of stoquastic Hamiltonians, all of which relate to quantum spin systems.Condensed matter physicists, mathematical physicists, functional analysts, workers in quantum computation, and computer scientists recently have begun to discover the close relationships that exist between several of the important questions in their respective fields. A small number of key properties about quantum spin Hamiltonians, the dynamics they generate, and their ground states are the main ingredients needed to address questions about the physical behavior of quantum spin models, about the computational efficiency of numerical algorithms to compute ground state properties and simulate dynamics, and about new complexity classes that are emerging in the theory of quantum computation. This project brings together experts in condensed matter physics, functional analysis and spectral theory, probability theory, and computer science to develop a coherent mathematical theory that clarifies the interrelationships of these key properties and, in particular, their relevance for the emerging field of quantum complexity theory in the context of quantum computation.
该奖项支持谢尔盖·布拉维、马修·黑斯廷斯、布鲁诺·纳赫特盖勒、罗伯特·西姆斯、香农·斯塔尔、芭芭拉·特哈尔和洪泽佑七位研究人员在量子自旋系统数学理论中的三个问题上所做的工作。第一个是团簇,局域性和Lieb-Robinson边界,自旋扩散和大自旋渐近性,目的是提高对量子晶格动力学的理解。第二类集中于基态性质:局域熵和纠缠的面积定律,基态上方的光谱带隙及其与关联函数行为的关系,以及矩阵积态对基态的逼近质量。第三类群包含计算复杂性理论中的一些问题:计算复杂性类、QMA完备性、有间隙的哈密顿量与复杂性之间的联系,以及随机哈密顿量的计算能力,所有这些都与量子自旋系统有关。凝聚态物理学家、数学物理学家、泛函分析师、量子计算工作者和计算机科学家最近开始发现各自领域中的几个重要问题之间存在着密切的关系。关于量子自旋哈密顿量、它们产生的动力学和它们的基态的一小部分关键性质是解决关于量子自旋模型的物理行为、关于计算基态性质和模拟动力学的数值算法的计算效率以及关于量子计算理论中出现的新的复杂类别的问题所需的主要成分。这个项目汇集了凝聚态物理、泛函分析和光谱理论、概率理论和计算机科学方面的专家,以开发一种连贯的数学理论,阐明这些关键性质之间的相互关系,特别是它们与量子计算背景下的量子复杂性理论这一新兴领域的相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno Nachtergaele其他文献

Non-Equilibrium States of a Photon Cavity Pumped by an Atomic Beam
  • DOI:
    10.1007/s00023-013-0247-7
  • 发表时间:
    2013-03-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Bruno Nachtergaele;Anna Vershynina;Valentin A. Zagrebnov
  • 通讯作者:
    Valentin A. Zagrebnov
A Multi-Dimensional Lieb-Schultz-Mattis Theorem
Droplet States in the XXZ Heisenberg Chain
Product Vacua with Boundary States and the Classification of Gapped Phases
  • DOI:
    10.1007/s00220-014-2025-x
  • 发表时间:
    2014-03-19
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sven Bachmann;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele
The complete set of in(cid:12)nite volume ground states for Kitaev’s abelian quantum double models
Kitaev 的阿贝尔量子双模型的完整 in(cid:12)nite 体积基态集
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Cha;Pieter Naaijkens;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele

Bruno Nachtergaele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno Nachtergaele', 18)}}的其他基金

Gapped ground state phases of quantum lattice systems
量子晶格系统的带隙基态相
  • 批准号:
    2108390
  • 财政年份:
    2021
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Workshops on Mathematical Challenges in Many-Body Physics and Quantum Information
多体物理和量子信息中的数学挑战研讨会
  • 批准号:
    1838991
  • 财政年份:
    2018
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Quasi-Locality Properties of Quantum Many-Body Dynamics and Applications
量子多体动力学的拟局域性性质及其应用
  • 批准号:
    1813149
  • 财政年份:
    2018
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Mathematical Challenges in Many-Body Physics and Quantum Information: CRM Thematic Program.
多体物理和量子信息中的数学挑战:CRM 主题计划。
  • 批准号:
    1813177
  • 财政年份:
    2018
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Dynamics, Ground States, and Elementary Excitations of Quantum Many-Body Systems
量子多体系统的动力学、基态和基本激发
  • 批准号:
    1515850
  • 财政年份:
    2015
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Dynamics and Ground States in Quantum Statistical Mechanics
量子统计力学中的动力学和基态
  • 批准号:
    1009502
  • 财政年份:
    2010
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
XVIth International Congress on Mathematical Physics, August 1 -- 8, 2009, Prague, Czech Republic
第十六届国际数学物理大会,2009 年 8 月 1 日至 8 日,捷克共和国布拉格
  • 批准号:
    0855460
  • 财政年份:
    2009
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
U.S.-Brazil Workshop: XVth International Congress on Mathematical Physics, August 5 - August 11, 2006, Rio de Janeiro, Brazil
美国-巴西研讨会:第十五届国际数学物理大会,2006 年 8 月 5 日至 11 日,巴西里约热内卢
  • 批准号:
    0555031
  • 财政年份:
    2006
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
Equilibrium and Non-Equilibrium Statistical Mechanics
平衡和非平衡统计力学
  • 批准号:
    0605342
  • 财政年份:
    2006
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
XIV International Congress on Mathematical Physics; July 28 - August 2, 2003; Lisbon, Portugal; Travel Funds
第十四届国际数学物理大会;
  • 批准号:
    0306887
  • 财政年份:
    2003
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 39.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了