Gapped ground state phases of quantum lattice systems

量子晶格系统的带隙基态相

基本信息

  • 批准号:
    2108390
  • 负责人:
  • 金额:
    $ 42.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The next generation of quantum technologies is poised to exploit new quantum phases of matter with properties quite unlike the well-known quantum materials exhibiting superfluidity and superconductivity. Good mathematical models for most aspects of superconductivity already exist, and superconducting materials have been successfully applied in many technological applications for decades. The new phases that will be studied in this project, however, are described in terms of particle-like entities called anyons, which have properties quite distinct from the traditional bosons and fermions that describe traditional materials (including superfluids and superconductors). Anyons are potential candidates to build quantum memory and other quantum information devices. Anyons have already been experimentally realized in fractional quantum Hall materials, and surely still hold surprises to be revealed in further studies. In this project, the principal investigator (PI) and collaborators will develop fundamental mathematical techniques required for the effective description of these new materials. This research falls squarely within NSF's Big Idea 'Quantum Leap'. Graduate and undergraduate students will be actively involved with the project and will be offered opportunities to interact with a range of researchers in pure and applied science and encouraged to pursue internships in technology companies as part of their education. Thus, the project will help prepare the workforce for the emerging quantum technology industry. Specific research problems to be pursued in this project fall in two main directions. 1) Stability of the gap above the ground state under small modifications of the interactions in the Hamiltonian. In particular, the PI will prove results for the bulk gap (away from boundaries) for systems with multiple ground states, for lattice fermion models, and for important classes of models that do not satisfy the usual frustration-freeness condition. To drop the frustration-freeness assumption will prompt us to develop new techniques. 2) Spectral properties of fractional quantum Hall (FQH) systems. Building on their recent work for the 1/3 filled case, the principal investigator and collaborators will analyze the situation of other filling fractions. The project will also study the stability of FQH phases and investigate the derivation of Haldane's pseudo-potential models beyond the existing 'finite-N' treatments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代量子技术准备开发新的量子相物质,其性质与众所周知的量子材料表现出的超流性和超导性完全不同。超导性的大多数方面都存在良好的数学模型,超导材料已经成功地应用于许多技术应用几十年。然而,在这个项目中将要研究的新阶段是用称为任意子的粒子状实体来描述的,它具有与描述传统材料(包括超流体和超导体)的传统玻色子和费米子截然不同的性质。任意子是构建量子存储器和其他量子信息设备的潜在候选者。任意子已经在分数量子霍尔材料中得到了实验实现,而且在进一步的研究中肯定还有惊喜要发现。在这个项目中,主要研究者(PI)和合作者将开发有效描述这些新材料所需的基本数学技术。这项研究福尔斯完全符合NSF的大创意“量子飞跃”。研究生和本科生将积极参与该项目,并将有机会与纯科学和应用科学领域的一系列研究人员进行互动,并鼓励他们在技术公司实习,作为他们教育的一部分。因此,该项目将有助于为新兴的量子技术行业准备劳动力。在这个项目中要解决的具体研究问题主要有两个方向。1)在哈密顿量中相互作用的微小修改下基态之上的差距的稳定性。特别是,PI将证明具有多个基态的系统的体隙(远离边界)的结果,晶格费米子模型,以及不满足通常的无挫折条件的重要类别的模型。放弃无挫折的假设将促使我们开发新的技术。 2)分数量子霍尔(Fractional Quantum Hall,简称FWHH)系统的光谱性质。基于他们最近对1/3填充病例的工作,主要研究者和合作者将分析其他填充分数的情况。该项目还将研究稳定性的氢阶段和调查的推导出Halcantine的赝势模型超出现有的'有限N'的治疗。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno Nachtergaele其他文献

Non-Equilibrium States of a Photon Cavity Pumped by an Atomic Beam
  • DOI:
    10.1007/s00023-013-0247-7
  • 发表时间:
    2013-03-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Bruno Nachtergaele;Anna Vershynina;Valentin A. Zagrebnov
  • 通讯作者:
    Valentin A. Zagrebnov
A Multi-Dimensional Lieb-Schultz-Mattis Theorem
Droplet States in the XXZ Heisenberg Chain
Product Vacua with Boundary States and the Classification of Gapped Phases
  • DOI:
    10.1007/s00220-014-2025-x
  • 发表时间:
    2014-03-19
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sven Bachmann;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele
The complete set of in(cid:12)nite volume ground states for Kitaev’s abelian quantum double models
Kitaev 的阿贝尔量子双模型的完整 in(cid:12)nite 体积基态集
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Cha;Pieter Naaijkens;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele

Bruno Nachtergaele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno Nachtergaele', 18)}}的其他基金

Workshops on Mathematical Challenges in Many-Body Physics and Quantum Information
多体物理和量子信息中的数学挑战研讨会
  • 批准号:
    1838991
  • 财政年份:
    2018
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
Quasi-Locality Properties of Quantum Many-Body Dynamics and Applications
量子多体动力学的拟局域性性质及其应用
  • 批准号:
    1813149
  • 财政年份:
    2018
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
Mathematical Challenges in Many-Body Physics and Quantum Information: CRM Thematic Program.
多体物理和量子信息中的数学挑战:CRM 主题计划。
  • 批准号:
    1813177
  • 财政年份:
    2018
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
Dynamics, Ground States, and Elementary Excitations of Quantum Many-Body Systems
量子多体系统的动力学、基态和基本激发
  • 批准号:
    1515850
  • 财政年份:
    2015
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
Dynamics and Ground States in Quantum Statistical Mechanics
量子统计力学中的动力学和基态
  • 批准号:
    1009502
  • 财政年份:
    2010
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
XVIth International Congress on Mathematical Physics, August 1 -- 8, 2009, Prague, Czech Republic
第十六届国际数学物理大会,2009 年 8 月 1 日至 8 日,捷克共和国布拉格
  • 批准号:
    0855460
  • 财政年份:
    2009
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
  • 批准号:
    0757581
  • 财政年份:
    2008
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
U.S.-Brazil Workshop: XVth International Congress on Mathematical Physics, August 5 - August 11, 2006, Rio de Janeiro, Brazil
美国-巴西研讨会:第十五届国际数学物理大会,2006 年 8 月 5 日至 11 日,巴西里约热内卢
  • 批准号:
    0555031
  • 财政年份:
    2006
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
Equilibrium and Non-Equilibrium Statistical Mechanics
平衡和非平衡统计力学
  • 批准号:
    0605342
  • 财政年份:
    2006
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Continuing Grant
XIV International Congress on Mathematical Physics; July 28 - August 2, 2003; Lisbon, Portugal; Travel Funds
第十四届国际数学物理大会;
  • 批准号:
    0306887
  • 财政年份:
    2003
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
微生物灌浆:地基基础加固的新探索
  • 批准号:
    51078202
  • 批准年份:
    2010
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
变分与拓扑方法和Schrodinger方程中的Open 问题
  • 批准号:
    10871109
  • 批准年份:
    2008
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Algorithm for Estimating Seismic Damage of Buried Pipelines Using State-Vector Space on Road Surface Ground Failures
路面地面破坏状态向量空间估计埋地管道地震损伤算法的开发
  • 批准号:
    22K18303
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
  • 批准号:
    2154371
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Continuing Grant
Ground state nuclear structure properties studied via laser interactions
通过激光相互作用研究基态核结构特性
  • 批准号:
    SAPPJ-2019-00056
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Subatomic Physics Envelope - Project
Theoretical research on the ground state destabilization hypothesis in enzymatic reactions
酶反应基态失稳假说的理论研究
  • 批准号:
    22K05045
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10678900
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
RUI: Neutron Star Crusts in Multi-Messenger Astronomy: Probability Distributions of Ground State and Accreted Crusts with Rigorously Quantified Modeling Uncertainty.
RUI:多信使天文学中的中子星地壳:具有严格量化建模不确定性的基态和吸积地壳的概率分布。
  • 批准号:
    2209536
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Standard Grant
Manipulations of steady-state excitons based on material design and ground-state observation
基于材料设计和基态观察的稳态激子操控
  • 批准号:
    22K03536
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Community Engagement Core
社区参与核心
  • 批准号:
    10361892
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10510157
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
Exotic Magnetic Ground States and Ground State Selection in Quantum Materials
量子材料中的奇异磁基态和基态选择
  • 批准号:
    RGPIN-2019-07084
  • 财政年份:
    2022
  • 资助金额:
    $ 42.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了